
Objective: This work investigated the impact of 
uncertainty representation on performance in a com-
plex authentic visualization task, submarine localization.

Background: Because passive sonar does not 
provide unique course, speed, and range information 
on a contact, the submarine operates under signifi-
cant uncertainty. There are many algorithms designed 
to address this problem, but all are subject to uncer-
tainty. The extent of this solution uncertainty can be 
expressed in several ways, including a table of locations 
(course, speed, range) or a graphical area of uncertainty.

Method: To test the hypothesis that the representa-
tion of uncertainty that more closely matches the experts’ 
preferred representation of the problem would better 
support performance, even for the nonexpert., perfor-
mance data were collected using displays that were either 
stripped of the spatial or the tabular representation.

Results: Performance was more accurate when 
uncertainty was displayed spatially. This effect was only 
significant for the nonexperts for whom the spatial dis-
plays supported almost expert-like performance. This 
effect appears to be due to reduced mental effort.

Conclusion: These results suggest that when the 
representation of uncertainty for this spatial task better 
matches the expert’s preferred representation of the prob-
lem even a nonexpert can show expert-like performance.

Application: These results could apply to any 
domain where performance requires working with 
highly uncertain information.

Keywords: decision making, naturalistic decision mak-
ing, cognitive processes, knowledge representation, 
problem solving, reasoning

IntroductIon
This has been called the “information age” 

and people expect to use information to help 
them make decisions. However, not everything 
that poses as information is accurate and/
or complete. Thus, the knowledgeable person 
must assess the underlying uncertainty of the 
information used. Sometimes the information 
comes with some indicator of its reliability 
(e.g., 50% chance of rain) and sometimes it 
does not (a high of 68º). The indicator can be 
numeric, as the previous example, or semantic 
(e.g., very likely), or graphical (e.g., variance 
bars on a graph). This paper examines the ways 
in which the external representation of uncer-
tainty impacts the interpretation of information 
and hence task performance. That uncertainty 
information impacts decision making should 
not be a question; however, the research results 
are inconclusive, perhaps due to the format 
of the uncertainty information (Gigerenzer & 
Brighton, 2009) or the training of the decision 
maker.

There are many variants of uncertainty. The 
term could refer to noise in the information, sta-
tistical variability, nondeterministic relationship 
between action and consequences, or even the 
psychological reaction to difficult problems. In 
this paper we shall limit ourselves to any factor 
that makes the information less than 100% accu-
rate. We will provide more detail on the specific 
components when we discuss the domain.

Although there are numerous papers offering 
suggestions for how to depict uncertainty (Pang, 
Wittenbrink, & Lodha, 1997) and some that 
apply usability engineering to their displays 
(Slocum, Cliburn, Feddema, & Miller, 2003), 
there are few that link the form of the visualiza-
tion to human performance. For example 
Kirschenbaum and Arruda (1994) showed that 
compared to a textual indicator, a visual display, 
referred to as an area of uncertainty (AOU) 
ellipse, significantly improved accuracy in a 
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submarine location task. Finger and Bisantz 
(2002) found similar improvements when using 
a degraded or blended visual icon for a radar 
identification task. Both of these studies were 
spatial tasks and the spatial form of the uncer-
tainty presentation matched that of the basic 
form of the task.

In contrast, Mahan and colleagues (Mahan, 
Kirschenbaum, Jilg, & Marino, 1998) used a 
temporal task, the arrival time of a ship at a pier, 
and varied amount of uncertainty and presenta-
tion mode. In the dynamic (temporal) condition, 
uncertainty was represented by an animation in 
which a larger/faster animation effect indicated 
greater uncertainty. Again, under the most diffi-
cult conditions, the display that more closely 
matched the associated variable and the repre-
sentation of the problem supported significantly 
better performance. In this case, a dynamic 
(temporally animated) display improved perfor-
mance on this temporal task while spatial and 
numeric displays of uncertainty did not.

representation Match Hypothesis
Following Zhang’s (1997) definitions, “exter-

nal representations are defined as knowledge and 
structure in the environment . . . and as exter-
nal rules, constraints, or relations embedded in 
physical configurations. . . . In contrast, internal 
representations are the knowledge and structure 
in memory” (p. 180). Internal representations 
can be made external as when one draws a figure 
or writes an equation to represent the problem 
or task. Conversely, an external representation 
is converted into an internal one as one learns 
about the problem domain. Interestingly, there is 
evidence from neuroimaging data to indicate that 
mental imagery and perception of external visual 
images display similar brain activation patterns 
(Borst & Kosslyn, 2008; Kosslyn, Ball, & Reiser, 
1978; William, Scott, Marie, & Stephen, 2009).

It is our conjecture that external representa-
tions of uncertainty that more closely match the 
internal representation used by the problem 
solver will better support decision making. 
However, as we have no access to the internal 
representation, we propose an alternative that 
does not rely on the internal representation. Spe-
cifically, with respect to uncertainty, the findings 
cited previously suggest that performance in a 

domain should be better (i.e., more accurate or 
faster) when the uncertainty is represented exter-
nally in the same general format (spatial, tempo-
ral, etc.) as the key variable(s) in the problem. 
Thus, if the problem is fundamentally temporal 
(e.g., predict when will something occur), then 
the uncertainty representation should capture the 
time dimension; if it is fundamentally computa-
tional, then it should be represented by numer-
als; if it is fundamentally spatial (e.g., judge 
where something is), then the representation of 
uncertainty should be spatial. This does not 
mean that the problem solver’s representation is 
an exact copy (or even diagram) of the real 
world, but that it captures the elements of the 
problem that are required for problem solving in 
a way that is congruent with the problem. Thus, 
a timeline can be a temporal display if appropri-
ate to the task. Note that even if the domain is 
generally spatial, the particular problem might 
not be. For example, the problem might be to 
compute the distance between two points in space 
rather than determine the location of an object. 
In that case, a numeric representation might be 
better. In the case of the problem presented here, 
the task is to judge if the location of an object is 
sufficiently well known to take action, and thus 
a spatial representation is predicted to be more 
useful.

Representation match per se does not tell the 
entire story. Why should matching the represen-
tation of uncertainty to the general form of the 
problem representation improve performance? 
One reason might be that external congruent 
representation reduces the internal mental work 
of translating from one kind of representation 
(e.g., numeric) to another (e.g., spatial) repre-
sentation.

The external representation might not be lim-
ited to the visible/audible elements of the prob-
lem, but could also include other information 
such as uncertainty or directional/force vectors. 
Experts use this information to make decisions 
and solve problems, and experts include them 
explicitly in their problem representations. For 
example, Larkin and Simon (1987) found that 
expert physicists included force vectors in their 
representations of simple machines. This addi-
tional information was incorporated into the 
drawings of the visible elements of the problems 
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(pulleys, ramps, etc.). It was typical of the draw-
ings of experts but not student-novices. This 
might be because adding the vector required 
more mental effort than the students could mus-
ter. Kirschenbaum (1992) also found evidence 
for experience differences creating an accurate 
external representation when novice, journey-
men, and expert submariners transformed 
numeric course, speed, and bearing into tradi-
tional nautical line-of-sight vector drawings. 
These drawings were created from memory and 
without any intermediary work on paper. Thus, 
the transformation from numeric to spatial rep-
resentation required internal cognitive work. In 
both studies, the experts were more accurate 
than novices.

Perhaps, this performance difference between 
experts and novices performance could be par-
tially alleviated by augmenting external repre-
sentations for novices or aiding them in the  
creation of the external representation. Nadav-
Greenberg and Joslyn (2009) found that a 
representation of uncertainty improved nonex-
pert decision making for a task using weather 
information. An earlier paper reported improve-
ment for both novices and professional forecast-
ers (Nadav-Greenberg, Joslyn, & Taing, 2008).

Objective measurement of mental effort is 
difficult, so we took the approach of analyzing 
speech utterances for indicators of mental effort 
in the form of changing or adding to the explicit 
information that was given. For example, the 
comments “The TMA solution range is about 
what I expect from my mental calculation” or  
“I think his range is closer, and he’s headed 
reciprocal to what the system solution is” clearly 
indicate mental effort to confirm or disconfirm 
the computer. These are well-practiced skills for 
expert submariners who engage in what they call 
“mental gym” to develop speed and accuracy.

From here forward we limit our discussion to 
the representation of uncertainty. One challenge 
to studying the underlying nature of key vari-
ables in a problem involves determining how the 
experienced performer prefers to represent the 
problem. Our first approximation to an answer 
for this question was to analyze the problem in 
the “real” world and look for logical representa-
tions. Thus, if the problem is a spatial one (e.g., 
Kirschenbaum & Arruda, 1994), one might 

expect a spatial representation of uncertainty. If, 
in contrast, the problem is a temporal one 
(Mahan et al., 1998), one could predict that the 
uncertainty representation would be temporal. 
Another way to investigate this idea is to exam-
ine the form of the information that the experi-
enced person uses when he or she has several 
formats available. By capturing gaze frequency 
and duration, the eye-tracker can help with this 
examination. In a pilot study of five highly expe-
rienced submarine officers (all prior command-
ing or executive officers) we did just that. The 
eye-tracking results showed that these experts 
spent 65.8% (SD = 25.4%) of the time looking at 
spatial representations of the problem as com-
pared to 26.7% (SD = 30.1%) of the time look-
ing at either tabular or textual information. 
Although not statistically significant due to the 
large variance and small sample, that is a differ-
ence of more than two to one.

In the submarine domain there are typically 
several different explicit representations of sta-
tistical uncertainty. If, however, the representa-
tion of uncertainty is not congruent with the  
preferred problem representation (e.g., a numeric 
or textual representation of a spatial problem), 
the problem solver must mentally add uncer-
tainty to the perceptual picture, transformed from 
the numeric or textual values. This could result in 
longer time to solve the problem or a less accu-
rate solution. Thus, placing the external repre-
sentation of uncertainty on the same display as 
the representation of the spatial relationships 
between the contact and own ship reduces the 
cognitive effort required to assess the goodness 
of the solution and facilitates performance. In 
summary, representations that require additional 
mental effort may impede performance, either in 
terms of the time required, or accuracy, or both.

The remainder of this paper will first describe 
key features of the submarine domain and then 
address data from the eye-tracker that points to 
most useful information format. Finally, we will 
discuss the central experiment in which uncer-
tainty representation format was manipulated.

domain Background
Before discussing the experiments, the reader 

needs to understand a bit about the subma-
rine domain to understand the visualizations 
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being examined and the nature of uncertainty 
that is the focus of problem solving. The task 
of determining the range, course, and speed 
of underwater contacts in a passive sonar sce-
nario is called submarine target motion analysis 
(TMA). Locating the contact is a team sport with  
specific responsibilities assigned to specific indi-
viduals. This requires an enlisted sonar technician 
to identify the contact in the noise of the under-
sea environment, an enlisted TMA technician to 
employ the various TMA techniques and algo-
rithms to localize the contact, and an officer (offi-
cer of the deck, OOD) to maneuver the ship and 
decide when the “solution” is sufficiently accurate 
for the task at hand. The OOD does not perform 
TMA but does evaluate the quality (accuracy and 
certainty) of the solution to support decision mak-
ing. The focus of this study was the OOD’s use of 
uncertainty displays to support his decision mak-
ing. (At the time of the study all submariners were 
men.) The enlisted sonar tech and TMA tech were 
simulated. As on a Navy submarine, the OOD 
was able to look at their displays, (virtually) over 
their shoulders and thus observe the displays of 
uncertainty. The OOD does not typically have his 
own dedicated displays.

Localization is a particularly difficult prob-
lem, in part because of the physics of sound 
transmission through water (Urick, 1983). 
Sound reflects, refracts, and scatters due to pres-
sure, temperature, salinity, and turbidity. The 
information “seen” is rather like a reflection in a 
fun-house mirror. Thus, one source of the uncer-
tainty is the noisy nature of the basic data, the 
received bearing to the contact.

The U.S. submarine force primarily uses 
passive sonar, that is, they just listen. When 
something makes noise underwater that noise 
is picked up by hydrophones, processed, and 
displayed to the sonarman as a swath of coher-
ent noise against a background of random 
noise (see Figure 1). What he sees tells him 
that there is some noise source roughly at a 
given bearing.

Unlike a visual contact, range, speed, and 
direction of movement, or even the identity of 
the contact, are not observable. Because these 
features of the contact are not directly observ-
able, there is uncertainty in the range, speed, and 
course of the contact, but because there are limits 

to how fast an undersea contact is likely to be 
going, the greatest uncertainty is in range.

Not only are the data noisy, but solving the 
problem is mathematically underdetermined 
with two known quantities (bearing and time) 
and three unknowns (course, speed, range). 
There are numerous techniques and algorithms 
to determine the solution using data collected 
over time (Ferkinhoff, Nguyen, Hammel, & 
Gong, 1993), but it is frequently difficult or 
impossible to determine which one will work 
best in any given situation. Lastly, the solution 
techniques and/or algorithms contain their own 
sources of uncertainty, either statistical or  
procedural. These complications are always 
considerations in solving the TMA problem. 
Thus, determining the location of a sound source 
(“contact”) is a very difficult problem because 
the information is uncertain, there is much at 
risk, and the situation is always dynamic. Given 
enough time, the solutions usually converge, but 
because this is a dynamic problem, speed and 
accuracy have a U-shaped relationship. It takes 
some time (and maneuvers) to develop a good 
solution, but taking too long might allow the 
other platform to detect own ship, or it might 
just drive out of the area.

All of the aforementioned contribute to the 
uncertainty associated with submarine decision 
making. To reiterate, the sonar data are noisy 
due to the way sound is transmitted underwater 
and the noise in the environment. Second, these 
data provide only bearings and the time the bear-
ings arrive while the solution must give course, 
speed, and range to the sound source. Third, all 
of the computations (there are many possible 

Figure 1. Example of a sonar display.



Visualizing uncertainty 513

algorithms) used to transform these noisy bear-
ings have statistical uncertainty and, due to the 
underconstrained nature of the problem, result in 
multiple possible solutions. With proper maneu-
vering, the solutions do converge over time, but 
waiting too long causes its own problems. Thus, 
there are multiple sources for the uncertainty.

Following the representation match hypothe-
sis, we predicted that when only one type of  
display was provided, spatial displays of uncer-
tainty would lead to better performance than 
tabular ones. To test this prediction we manipu-
lated the display of locational uncertainty while 
maintaining the single best point solution. 
Uncertainty was displayed in either tabular or 
spatial format, but not both. This allowed us to 
determine the effect of uncertainty display for-
mat on performance. Because the spatial uncer-
tainty displays did not require mentally adding 
uncertainty to the picture, we predicted fewer 
spatial transformations would be required to 
determine a solution.

MetHod
Participants

There were 16 submarine officers who par-
ticipated. One was eliminated because he was 
called away and was unable to complete the 
experiment. Although they all held the rank of 
lieutenant and all were qualified as officer of 
the deck, they varied in expertise due to their 
specific shipboard experience. All participants 
were instructors at the U.S. Submarine School 
and, as such, were highly qualified in the 
subjects that they taught. Participants had a 
mean of 9 (SD = 4) years in the Navy ranging 
from 5 to 14 years of Naval experience. As the 
participants were all instructors, expertise was 
defined according to what they taught. Experts 
taught the skills needed for this task, nonex-
perts taught other subjects. For example, the 
experts taught tactics (i.e., how to respond to a 
hostile contact that necessarily includes treat-
ment of uncertainty in sonar) while nonexperts 
taught another subject such as navigation (i.e., 
how to use a maritime chart, rules of the road, 
which does not involve analysis of passive 
sonar data). Seven experts and eight nonexperts 
completed the experiment.

Apparatus
Combat system toolbox (CS Toolbox). Sub-

mariners used a simulated combat system called 
the CS Toolbox that contains an unclassified 
version of their usual tools. This system is writ-
ten in MatLab™ and was originally designed to 
test new algorithms. It was run in a classroom 
on a laptop computer and displayed on a 17-inch 
monitor. A scan converter was connected to the 
monitor to capture the display onto videotape.

The participants were playing the role of a 
decision maker (i.e., OOD), not an operator (i.e., 
sonar or TMA tech). Therefore, the solutions 
were displayed as if they came from operators or 
algorithms. This arrangement mimics shipboard 
conditions where the decision makers do not 
actually interact with equipment, although they 
do look at the screens and solutions generated by 
operators. Participants were able to make maneu-
vers as they would aboard ship. The CS Toolbox 
kept track of both generated solutions and the 
scenario truth. Uncertainty was displayed in a 
number of ways (see Figure 2), including a table 
of solutions, a spatial area of uncertainty, and a 
set of solution lines colored to match the regions 
and solutions in the table and area of uncertainty. 
(This coloring was arbitrary and intended to 
indicate what solutions went together, not their 
likelihood.) In Figure 2, the spatial representa-
tions are enclosed in dashed lines and the table of 
solutions is enclosed in a solid line. In order to 
separate the two classes of uncertainty display 
for the experiment, two separate displays were 
developed, one with only a tabular representa-
tion (see Figure 3a) and one with only spatial 
representations of uncertainty (Figure 3b), pro-
viding two relatively clean experimental condi-
tions with high external validity in the complex 
domain. These two displays are approximately 
equivalent in that both include the essential 
information of bearing, course, speed, and range 
and can be interpreted to indicate the extent of 
the solution disagreement and both give the most 
likely solutions from the same set of algorithms. 
Where they are not equivalent is that the graphi-
cal representation, especially the parameter esti-
mation plot, considers all possible values of the 
solutions and grades them for agreement. Thus, 
the spatial displayed did provide nominally more 
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information, not just a different modality of 
information. While there is more screen real 
estate devoted to the spatial representation, the 
data tables are important inputs to some of the 
mental calculations that submariners are trained 
to perform to validate any computerized solu-
tions. No table could show all possible solutions, 
so the table shows only the most likely for each 
solution. Furthermore, because there is always 
uncertainty in this problem and because uncer-

tainty has been communicated to submariners by 
the system for at least the past 25 years, there 
was no condition that did not use some means of 
displaying uncertainty. Such a condition would 
have been impossible from their perspective. As 
this experiment used real submariners as the sub-
ject population, we were limited in how we could 
manipulate the displays and still maintain an 
information environment in which their exper-
tise was valid.

Figure 2. This figure shows the combat system (CS) Toolbox. Uncertainty is displayed as both a 
spatial set (enclosed in a dashed line) of possible solutions and a table of solutions (enclosed in 
a solid line) to the localization problem. The center window is a geospatial (GEO) or bird’s eye 
display, with own ship in the center and bearing lines at the current time and in the past extending 
from own ship. The most likely possible solutions are the lines between the two bearing lines. 
Moving clockwise from the left, the other windows show the following. The top left window 
shows a time-bearing display of measured sonar data at two different aggregations with the data 
plotted below the table. The next window shows a table of solutions displaying the numeric 
values of some possible solutions with the recommended solution at the top. (Notice that the 
greatest variation is in range, the most difficult component of localization to determine. Solutions 
below the “TMA Solin” line are in no particular order.) The next window is a traditional maritime 
line of sight (LOS) display with own ship at the bottom and vectors representing bearing and 
possible courses and speeds. Below that is a parameter evaluation plot (PEP) and associated input 
data. The PEP (bottom right) evaluates the likelihood of the full set of solutions at time one and 
time two. To the left of it is a bearing scatter graph.
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Figure 3. The separate displays with only (a) spatial uncertainty or only (b) tabular uncertainty. 
These are essentially the same displays as Figure 2, but with the alternative solutions removed 
from either the table of solutions or the line-of-sight, parameter evaluation plot (PEP), and 
geographic windows.
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ASL Model 501 eye-tracker. In order to track 
what information was being used, an ASL 
Model 501 eye-tracker was also used for most 
of the participants. The eye-tracker was mounted 
on a chinrest to stabilize the head for more 
accurate tracking. Difficulties tracking five of 
the participants limited use of the eye-tracker, 
generally due to the Navy-issued wire rim eye-
glasses that produce significant reflections. Of 
those who could be tracked, four were classified 
as experts and five were nonexperts.

A lapel microphone connected to a Sony mini 
digital camcorder mounted on a tripod recorded 
the general scene and participant verbal protocols.

Scenarios
The scenarios were relatively simple, with 

only one contact. Two scenario types (geometry/
range) were created, a and b. To reduce the pos-
sibility of participants sharing their experiences 
with colleagues, two versions of each scenario 
were created by rotating the geometry by a ran-
dom amount, for a total of four scenarios, a1/2 
and b1/2. Each participant was given one of 
the a scenarios and one of the b scenarios, with 
order counterbalanced across participants.

task
The task of the participants was to deter-

mine when there was an adequate solution on 
the contact to shoot a torpedo at it. This was 
a decision-making task, as the system used an 
automated “operator” to actually manipulate 
solutions. This arrangement is typical of many 
Naval decision tasks. This was not just a wait-
ing task, but required maneuvering the boat to 
facilitate improving the solution. The geom-
etry of the problem (relative positions of own 
ship and the other platform) determines what 
constitutes a good maneuver and how many 
maneuvers are required to sufficiently refine the 
solution. Because the torpedo has its own sonar, 
the goal was to determine when the solution was 
adequate to hit the target and not to work the 
problem beyond that point.

Procedure
After signing an informed consent form, 

participants were introduced to the CS Toolbox. 

Although participants were familiar with the 
components of the toolbox, none had used the 
toolbox itself prior to the experiment. Initial 
training was with the full CS Toolbox. Reading 
from a script, the experimenter gave the partici-
pants a guided tour of the CS Toolbox so that 
they would know how and where to find their 
accustomed tools. The tour began with the upper 
left-most window and proceeded clockwise. 
They were also taught how to use some exper-
iment-specific features such as how to change 
own ship’s course and speed by dragging a 
speed-course vector line to the desired setting. 
(Shipboard, this would be done by voice com-
mand to the helm.) As every submarine is dif-
ferent, having different versions of the contact 
management software, all questions could not 
be anticipated in advance so the demonstration 
was adapted to answer individual participants’ 
questions. To assure their comfort with the 
Toolbox, they also worked one sample problem 
before beginning the experiment.

During the experiment two different displays 
were used (see Figure 3), one with uncertainty 
only represented spatially and one with only a 
tabular representation of uncertainty. All partici-
pants solved one scenario with each version, at a 
single session. After the practice scenario, they 
were introduced to the first test system (tabular 
or spatial) and the first scenario was run. Subse-
quently, the second display variant was intro-
duced and the second scenario was run. The  
presentation order and scenarios were counter-
balanced.

Following the demonstration and sample sce-
nario, participants were asked to look at the dis-
play and follow directions while an experimenter 
calibrated the eye-tracker.

Instructions. The participants were instructed 
that their task was to determine when an adequate 
solution had been achieved to successfully shoot a 
torpedo at the contact. Participants were instructed 
to tell the experimenter when they had a “firing 
solution.” The problem was stopped at that point 
because the simulation did not include weapons. 
While they worked, participants were videotaped 
and asked to talk aloud. Following the experiment, 
all participants then answered biographical ques-
tions and were debriefed. Each experiment took 
approximately 2 hours.
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AnAlySIS And reSultS
Two performance metrics were analyzed, 

accuracy and speed, to come to a solution. Better 
performance can be defined as faster solutions or 
more accurate solutions. The submarine world 
is not necessarily subject to a speed/accuracy 
tradeoff. Sometimes not acting when there is 
sufficient information reduces accuracy because 
both the contact and own ship are moving.  
The movement may make the solution less accu-
rate due to changes occurring after the last obser-
vation or good solution such as, for example, a 
maneuvering contact, or a contact moving out of 
sensor/weapon range. Moreover, localization for 
weapon placement need not be precise because the 
torpedo has its own homing sonar. Thus, waiting 
for an overaccurate solution can be counterproduc-
tive and may endanger own ship by increasing the 
probability of counterdetection. For these reasons, 
while retaining the timeliness measure, we opted 
for a binary accuracy criterion of weapon hit or 
miss, rather than a continuous degree of error mea-
sure. This is the standard to which Naval officers 
are trained. Calculation of hit or miss was based on 
standard U.S. Navy methods.

Accuracy
Overall, participants had more hits than 

misses (27 hits vs. 10 misses), however, they 
were not evenly distributed across conditions 
with 0.80 probability of a hit for the spatial con-
dition only and 0.62 probability of a hit for the 
tabular condition. These condition differences 
were statistically significant, χ2(1) = 6.5 p < .05.

Expertise effects. Overall, experts were sig-
nificantly more likely to have a hit than nonex-
perts, χ2(1) = 3.82, p < .02, with the probability 
of a hit for an expert at 0.84 and for a nonexpert 
at 0.54. There was also an expertise by display 
interaction (see Figure 4). Display did not mat-
ter for experts, but the nonexperts had signifi-
cantly more hits with the spatial display of 
uncertainty, χ2(1) = 8.5, p < .01. Notice that with 
the spatial display, the nonexperts’ hit rate 
(0.75) nearly matched that of the experts (0.84).

time to complete
Time to complete the task was similar, regard-

less of condition (spatial M = 582 seconds, SEM 

= 59; tabular M = 695 seconds, SEM = 71) with 
no significant differences. While there appeared 
to be interaction effects, none reached the level 
of significance, probably due to large variances. 
Importantly, the condition with worse accuracy 
seemed to show a nonsignificant, but sugges-
tive, trend toward longer solution time, so there 
were no complicating speed-accuracy tradeoffs 
across conditions.

eye tracking
The eye tracking data showed that there were 

few differences and none of them statistically 
significant due to large variances. In both con-
ditions participants spent over 30% of the time 
looking at the principal spatial display, the Geo 
(the large central geosituational display with 
own ship in the center, Figure 2). The one sug-
gestive difference between the two conditions 
was that in the tabular condition they appeared to 
spend more time looking at the table (Figure 5), 
but again, this was not a large difference (25% vs. 
15%) nor was it statistically significant.

Mental effort
The verbal protocols were transcribed and 

all utterances coded for indications of mental 
effort as defined by mention of conclusions or 
projections that could not be read directly from 
the information on the display. As the partici-
pants had no paper or other means of externally 
recording or noting ideas, such utterances likely 
represented mental efforts rather than sum-
maries of external problem solving. A quarter 

Figure 4. Accuracy as a function of expertise and 
condition.
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of the transcripts were coded independently 
by two individuals, one experimenter and one 
undergraduate assistant. The interrater reliabil-
ity kappa was 0.74, p < .001.

As participants’ talk varied in the quantity of 
verbal utterance, both overall and across scenar-
ios, the proportion of mental effort utterances 
rather than the raw number of utterances was used 
for analysis. Mean proportion of such utterances 
was 0.27 (SEM = 0.02) for the spatial condition 
and 0.31 (SEM = 0.03) for the tabular condition, 
representing a significantly greater proportion of 
such mental effort utterances when using the tab-
ular display than when using the spatial represen-
tation, F(1, 14) = 4.91, p < .05, with a moderate 
effect size, Cohen’s d = .30. This pattern held for 
both experts and nonexperts, however experts 
made slightly fewer spatial transformations over-
all; experts, M = 0.26 (SEM = 0.045), nonexperts, 
M = 0.3 (SEM = 0.03), again with a moderate 
effect size, Cohen’s d = .47.

dIScuSSIon
This experiment supported the representation 

match hypothesis in general. This general effect 
is not surprising as the submarine localization 
problem is a spatial one, and eye tracking data 
suggested that experts used spatial representa-
tions of uncertainty most often. Then, not sur-
prisingly, performance on the TMA task was 
both more accurate and more rapid when prob-
lem solvers were given uncertainty information 
in spatial formats than when they were given 
uncertainty information in tabular formats (in 
the form of different TMA estimates).

The unpredicted expertise effect might be  
the most important result from these studies. 
Contrary to our expectation, performance 
enhancements with the spatial representation of 
uncertainty were largely limited to nonexperts. 
Experts are apparently so highly practiced that 
they can do the task with whatever information 
and displays they are given. On the other hand, 

Figure 5. Mean saccade frequency by region. Category names correspond to areas in Figure 2, including Table 
(of solutions), line of sight (LOS), geospatial (GEO), parameter evaluation plot (PEP), Time-Bearing (side 
left), and raw-sensor (table top left).
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the effect of representation for nonexperts shows 
that their performance can be improved signifi-
cantly with the right representation. Perhaps we 
should have predicted this result, given the lit-
erature (Nadav-Greenberg & Joslyn, 2009).

These data have implications for both display 
design and training. The most obvious implica-
tion is, that at least for this spatial task and for 
nonexperts, uncertainty should be represented 
and that representation should be spatial. A closer 
read of the data could suggest that the uncertainty 
representation could be presented in various for-
mats when an expert is in control, although addi-
tional studies may reveal benefits for experts of 
the preferred format in more complex scenarios.

A second implication is that spatial uncer-
tainty displays could provide a kind of scaffold-
ing that supports training. Anecdotally, we can 
say that experts know that any solution is uncer-
tain and have a feeling for both how uncertain it 
is and how much uncertainty is acceptable. We 
speculate that explicitly providing a spatial rep-
resentation of uncertainty, perhaps including 
fading the uncertainty representation as experi-
ence grows, could help the trainee to develop his 
knowledge in this critical area.

These experiments were limited to a single 
contact. With multiple contacts, as is often the 
case in the more crowded waters near shore and 
in constrained waters such as in straits and gulfs, 
multiple areas of uncertainty might overlap or 
clutter an already cluttered screen. Additional 
research is needed to address these situations.
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key PoIntS
 • Uncertainty can be represented in a number of ways.
 • For a spatial task such as determining the location 

of an object, a spatial representation was found to 
support more accurate and timely decision making.

 • These effects were dependent on experience, with 
no differences for experts but strong differences 
for nonexperts.
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