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Abstract

The term conceptual simulation refers to a type of everyday reasoning strategy commonly called
“what if” reasoning. It has been suggested in a number of contexts that this type of reasoning plays an
important role in scientific discovery; however, little direct evidence exists to support this claim. This
article proposes that conceptual simulation is likely to be used in situations of informational uncertainty,
and may be used to help scientists resolve that uncertainty. We conducted two studies to investigate
the relationship between conceptual simulation and informational uncertainty. Study 1 was an in vivo
study of expert scientists; the results suggest that scientists do use conceptual simulation in situations of
informational uncertainty, and that they use conceptual simulation to make inferences from their data
using the analogical reasoning process of alignment by similarity detection. Study 2 experimentally
manipulated experts’ level of uncertainty and provides further support for the hypothesis that conceptual
simulation is more likely to be used in situations of informational uncertainty. Finally, we discuss the re-
lationship between conceptual simulation and other types of reasoning using qualitative mental models.

Keywords: Scientific reasoning; Scientific discovery; Visualization; Model-based reasoning; Analogy;
Problem solving; In vivo observation

1. Introduction

In a famous anecdote, Einstein (1979) describes how, as a youth, he visualized himself
chasing a beam of light; he explains that later on, this imaginative leap contributed to his
development of the theory of relativity. Einstein’s thought experiment is one of the best-
known examples of a type of “what if” reasoning that has been implicated in scientific
discovery in a variety of fields. Other famous scientists who are reported to have engaged
in thought experiments include Galileo, Newton, Maxwell, Heisenberg, and Schrödinger, to
name a few (e.g., Shepard, 1988).

Correspondence should be addressed to Susan Bell Trickett, Naval Research Laboratory, Code 5515,
Washington, DC 20375-5337. E-mail: trickett@itd.nrl.navy.mil



844 S. B. Trickett, J. G. Trafton/Cognitive Science 31 (2007)

Scientists are likely to use such thought experiments, or “what if” reasoning, when it is
either impossible or impractical to conduct a physical experiment. In addition, from a purely
theoretical perspective, “what if” reasoning offers several advantages. Unlike quantitative
reasoning strategies, it does not require numerical precision. This may be useful (a) when
precise quantitative information is not available; or (b) when a scientist is attempting to
develop a general, or high-level, understanding of a system. Like other forms of mental model-
based qualitative reasoning, “what if” reasoning allows one to reason with partial knowledge
(whether incomplete or imprecise) and hence to accommodate the ambiguity inherent in
situations of uncertainty (Forbus, 2002). “What if” reasoning also allows the construction of
multiple alternatives, which may be useful in generating predictions or explanations when
scientists lack principled knowledge that can allow them to proceed in their reasoning with
some measure of certainty. All these situations share a high level of uncertainty; thus, “what
if” reasoning may be especially useful in some situations of uncertainty.

There are many types of uncertainty in complex domains such as scientific enquiry (Schunn,

Kirschenbaum, & Trafton, 2004) Schunn et al. differentiated between subjective uncertainty
(what a person feels) and objective uncertainty (uncertainty in the information a person has).
Our focus here is on informational uncertainty.

For reasons discussed below, we concentrate our research on the data analysis phase of
scientific discovery. During this phase, scientists must first recognize what information the data
actually represent; and second, come to an understanding of what that representation actually
means in terms of their research questions (i.e., interpret the data). Consequently, there are
two general areas where scientists are likely to encounter informational uncertainty. First, the
data themselves may literally be unclear: For example, data may be missing, inaccurate, or
noisy so that scientists must work to differentiate real phenomena from noise. Second, the
meaning of the data may be unclear; for example, experimental results may be anomalous
(i.e., incompatible with previously established empirical results or even theory), follow some
unexpected or unusual pattern, or otherwise conflict with the scientist’s predictions. Part of
the scientist’s task is to explain or otherwise resolve such expectation violations.

In other complex domains, such as meteorology, we have found that when people experience
informational uncertainty when using complex visualizations, they mentally transform the
visualization by adding their own representation of uncertainty, in order to resolve it (Trickett,
Trafton, Saner, & Schunn, 2007) Consequently, we expect that when scientists experience
informational uncertainty, they will try to resolve that uncertainty; and we propose that “what
if” reasoning is likely to be one strategy by which they attempt to do so because it allows
people to transform their current understanding by mentally constructing an alternative. “What
if” reasoning allows people to think through the implications of different starting assumptions
by playing out different scenarios and then to evaluate their plausibility. If this were the
case, we would expect “what if” reasoning to occur particularly in association with tentative
explanations, or hypotheses, that could account for particular instances of informational
uncertainty. Furthermore, if “what if” reasoning were used to try to resolve such uncertainty,
we would expect it to lead to an evaluation of the hypothesis to determine whether it adequately
accounts for the uncertainty and consequently resolves it.

What constitutes “what if” thinking? Brown (2002) proposed a three-step process that
consists of first, visualizing some situation; second, carrying out one or more operations on
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it; and third, seeing what happens. The third part of the process—seeing what happens—is
crucial. It distinguishes “what if” thinking from purely imagining because during this third
phase causal reasoning occurs to the results of the manipulation(s) of the second phase. A
well-known example of this type of thinking is Lucretius’ attempt to show that space is infinite
(Brown, 2002). Assuming space has a boundary (visualize a situation), throw an imaginary
spear toward it (carry out an operation on the visualization). If the spear goes through, there is
no boundary; if the spear rebounds, we infer a “wall” that must itself be in space that stopped
the spear (see what happens). Consequently, space has no boundary (causal reasoning).

Although Lucretius is clearly not a layperson, it is easy to apply the same processes to
everyday examples of this type of thinking. For example, suppose one is figuring out the steps
by which to assemble a piece of furniture (e.g., Lozano & Tversky, 2006), in the absence of
clear written instructions, and prior to making any irreversible decisions. One might mentally
start to arrange certain pieces where one thinks they should go (visualize a situation). Then
one might mentally attempt to insert a new piece (carry out an operation on the visualization).
One can then inspect the visualization to determine whether the new piece will fit (see what
happens). Finally, one can determine whether the initial arrangement is correct and decide
either to proceed with construction or to start over (causal reasoning).

As this illustration shows, “what if” thinking is hardly the type of arcane activity frequently
associated in the popular imagination with scientific genius, but rather an everyday reasoning
strategy available to scientist and layperson alike. How important is such a strategy likely
to be in the scientific reasoning process? On the one hand, scientific expertise—domain
knowledge and skills—is acquired only after many years of education and practice (Ericsson
& Charness, 1994; Ericsson, Krampe, & Tesch-Roemer, 1993; Schunn & Anderson, 1999).
On the other hand, current research suggests that, as Einstein himself maintained, what
sets scientific reasoning apart from everyday reasoning is not different processes but simply
greater precision, systematicity, and “logical economy” (Klahr & Simon, 1999). A full model
of scientific discovery should therefore include relevant everyday reasoning strategies and
heuristics. It has already been suggested that everyday reasoning strategies, such as mental
simulation and other forms of reasoning with qualitative mental models, play a role in a general
understanding of natural phenomena and physical systems (e.g., Hayes, 1988; Williams & de
Kleer, 1991). Our question is the extent to which one such strategy—“what if” reasoning—
guides the reasoning of experts’ scientific reasoning.

In fact, several everyday reasoning strategies have already been shown to play an important
role in the process of science, strategies such as analogy (Dunbar, 1995, 1997; Gentner, 2002;
Okada & Simon, 1997), attending to anomalies (Kulkarni & Simon, 1988), collaboration
(Azmitia & Crowley, 2001), use of mental models (Forbus, 1983; Forbus & Gentner, 1997),
and the like. The goal of this article is to investigate the role of “what if” thinking in the
scientific reasoning of contemporary scientists.

There is some evidence in the cognitive science literature that scientists specifically use
forms of “what if” reasoning. Reconstructions of historical discoveries and analyses of con-
temporary records such as journals and lab notebooks suggest that scientists conduct “mental
experiments” in a process that mirrors an empirical experiment (Nersessian, 1999) or other-
wise construct “runnable” mental models (e.g., Ippolito & Tweney, 1995). Empirical studies
of contemporary scientists also find the use of mental experiments (e.g.,Clement, 2002a; Qin
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& Simon, 1990) and mental simulation (Schraagen, 1993). This research spans a wide variety
of contexts (such as historical reconstruction, protocol study, and lab experiment), tasks (such
as scientific discovery, experimental design, and prediction), and participants (from famous
historical figures to contemporary expert practitioners to scientists-in-training).

Despite this body of research, it is difficult to draw general conclusions from the results.
The nature of historical studies makes it impossible to determine whether the mental experi-
mentation occurred in the course of the problem solving or retrospectively (Saner & Schunn,
1999). Nor are the studies of contemporary scientists conclusive. Qin and Simon (1990) told
participants to generate a mental image prior to performing the task, so that their use of men-
tal experimentation may not have been spontaneous. The scientists observed by Schraagen
(1993) and by Clement (2002a were not experts in the specific task domain and therefore
lacked precise domain knowledge. The use of “what if” reasoning in these studies was clearly
spontaneous; however, perhaps the scientists were using it to compensate for their lack of
domain knowledge (i.e., in this case, conceptual simulation was more of a lay strategy than
an expert one).

In sum, no experimental studies have been conducted with the express purpose of inves-
tigating the use of “what if” reasoning among expert, practicing scientists working in their
own domain; as a result, no clear picture has emerged as to when, how, and why scientists
might use this strategy. Our goal is first, to gather evidence that expert scientists do, in fact,
engage spontaneously in “what if” reasoning; and second, to investigate how they do so and
how significant a role this strategy plays in their acts of scientific enquiry.

Researchers use many different terms to describe the strategy we have loosely discussed
as “what if” reasoning—mental experiment, thought experiment, inceptions, mental simula-
tion, and so on. In all cases, however, the underlying strategy demonstrates the character-
istics described by Brown (2002), discussed above. In our study, we refer to these separate
processes—visualizing a situation, carrying out mental operations on it, and seeing what
happens—collectively as conceptual simulation. We believe this term captures the two most
crucial aspects of this type of reasoning; namely, it occurs at the conceptual level (rather than,
say, in any actual or external sense), and it involves mentally playing out, or “running,” a
model of the visualized situation, so that changes can be inspected.

More specifically, conceptual simulation involves constructing and manipulating a men-
tal model that not only derives from an external representation but is also an analog of it
(Clement, 2002b; Nersessian, 1999; Schwartz & Black, 1996a). Functionally, conceptual sim-
ulations adapt the external representation by adopting hypothetical values and playing out
their implications, to move beyond the information actually represented. This process allows
new inferences about that information to be made.

Our first challenge has been to develop a reliable means of identifying conceptual simula-
tions, which are an internal cognitive process rather than a directly observable behavior. Our
general method has been to collect verbal protocols of scientists solving problems in their
own domain. This method is based on the assumption that contents of working memory are
“dumped” into the speech stream, where they can be examined and coded (Ericsson & Simon,
1993). In order to increase the reliability of this detection and coding process, we have opera-
tionalized the notion of conceptual simulation such that the construct is empirically grounded
and observable in the speech stream: In a continuous sequence of utterances, the scientist (a)
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refers to a new representation of a system or mechanism; (b) refers to transforming that rep-
resentation spatially, in a hypothetical manner; and (c) refers to a result of the transformation.
This three-stage process corresponds to the processes described by Brown (2002) in defining
“what if” thinking.

Our first study is exploratory and examines the question of whether and to what extent
practicing scientists spontaneously use conceptual simulations. We further investigate the
extent to which this strategy is used to resolve specific instances of informational uncertainty,
in a cycle of hypothesis statement and evaluation. To determine the significance of the relation
between “what if” reasoning and hypothesis evaluation, we investigate the frequency of use
for other hypothesis-evaluation strategies that have been identified in the scientific reasoning
literature. If “what if” reasoning plays a significant role in the hypothesis evaluation process,
it should occur at least as frequently as these known strategies. Furthermore, there may be
relations between “what if” reasoning and these other strategies that can illuminate the overall
process of resolving informational uncertainty. To foreshadow the outcome of Study 1, our
results suggest that scientists do spontaneously use conceptual simulations, and they seem to do
so as a means of resolving informational uncertainty. Study 2 is a laboratory experiment—also
of expert scientists—in which we manipulate uncertainty to further test this hypothesis.

2. Study 1

2.1. Method

Dunbar (1995, 1997) demonstrated the value of naturalistic observation of scientists in un-
covering previously underspecified strategies and dynamics in the science laboratory. There-
fore, we have adapted Dunbar’s (1995, 1997) “in vivo” methodology for online observation
of scientific thinking in which participants perform their regular tasks and the experimenter
observes and records their interactions. We have focused our investigation on one specific
scientific task—data analysis—because it is a crucial task for many scientific domains, one
during which scientists attempt to account for their data and in which they are likely to expe-
rience a great deal of informational uncertainty. Data analysis is therefore likely to produce a
rich record of scientific thinking and hypothesis-generation about informational uncertainty.

2.1.1. Participants
Participants were recruited through personal connection of the experimenter or her asso-

ciates. The sample of scientists was selected to represent a diverse array of fields rather than
just one particular subfield and several different stages of data analysis, in order to make
the results more generalizable. Observations were recorded from nine scientists in eight data
analysis sessions. All the participants were either expert scientists who had earned their PhDs
more than 6 years previously or graduate students working alongside one of these experts.
Four of the sessions involved an expert scientist working alone. Three of the group sessions
involved a senior researcher and one or more graduate students; the remaining group session
involved two expert scientists. (Some scientists were thus observed over more than 1 session.)
Four sessions were in branches of physics (astronomy and computational fluid dynamics,
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Table 1
Dataset characteristics

Dataset On-Task Utterances % Total Utterances No. of Scientists Total Relevant Time

Astronomy 656 76 2 49 min
CFD submarine 437 42 1 39 min
CFD Laser 1 172 43 1 15 min
CFD Laser 2 184 74 1 13 min
fMRI 215 72 2 55 min
Neural spikes 217 64 2 54 min
Psychology 1 481 89 3 31 min
Psychology 2 916 64 2 75 min

Note. CFD = computational fluid dynamics.

or CFD), two were in neuroscience (fMRI and neural spikes), and two were in cognitive
psychology. Of the three datasets pertaining to CFD, one focused on a problem involving a
submarine, and two focused on laser pellet research.

2.1.2. Procedure
Participants agreed to contact a member of the research team when they were ready to

conduct some analysis of recently acquired data, and an experimenter visited the scientists
at their regular work location. All participants agreed to be videotaped during the session.
Participants working alone were trained to give talk-aloud verbal protocols. For scientists
working in groups, their conversation was recorded as they engaged in scientific discussion
about their data. All participants were instructed to carry out their work as though no camera
were present and without explanation to the experimenter (Ericsson & Simon, 1993).

Details about each individual session are reported in Table 1. All utterances were transcribed
and segmented according to complete thought (off-task utterances were excluded from anal-
ysis). Finally, a coding scheme (described below) was developed to explore the relationship
between conceptual simulation, uncertainty, and hypothesis evaluation.

2.1.3. Analysis tools and tasks
The psychology data were displayed numerically in Excel; all the other data were displayed

using visualization tools specific to the domain. Fig. 1 shows an example of the visualization
software used by one of the physicists.

Although each scientist or group of scientists used different tools, their tasks shared sev-
eral characteristics. They were all analyzing data that they themselves had collected from
observations, from a controlled experiment, or from running a computational model. They
displayed the data using their regular tools. Apart from the second CFD laser session, which
was a follow-up to the first session, all sessions represented the initial investigation of these
data. Whether their interest was exploratory or confirmatory, their goal was to understand the
fundamental processes that underlay the data. Table 2 summarizes the characteristics of each
data analysis session.
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Fig. 1. Screen snapshot of computational fluid dynamics data.

2.1.4. Coding scheme
The overall goal of this research was to investigate whether and when scientists use concep-

tual simulation, whether they use it to resolve informational uncertainty, and to what extent
they do so, relative to other strategies. We predicted that scientists would use conceptual
simulation to evaluate hypotheses they proposed to account for informational uncertainty.
Therefore, we developed a coding scheme that would allow us to identify conceptual simula-
tions, hypotheses, and several strategies that have been shown to be associated with hypothesis
evaluation.

2.1.4.1. Conceptual simulation: A conceptual simulation spans several utterances. It begins
with a reference to a representation of a system or part of a system. Mental operations are
then carried out on this representation to simulate the system’s hypothetical behavior under
certain circumstances. The initial representation may be grounded internally (e.g., in domain
knowledge or memory of a previously observed phenomenon) or externally (e.g., in a displayed
image). However, simply forming and transforming a mental image is not sufficient. The key
feature of a conceptual simulation is that it involves a simulation “run” that is both hypothetical
(i.e., it does not merely reproduce observed behavior) and alters the starting representation,
producing a different end state that can be inspected to “see what happens” (cf. Brown, 2002).
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Table 2
Characteristics of individual data analysis sessions

Domain Research Stage Data Type Data Data Source Task Description

Astronomy Exploratory Visual Velocity contour
lines laid over
optical data

Telescope
observations

Understand flow of gas in
galaxy

CFD submarine Confirmatory Visual Two-dimensional
line plots

Computational
model

Understand model in
relation to empirical
data collected by a
different researcher

CFD Laser 1 Confirmatory Visual Contour plots or
Fourier
decomposition

Computational
model

Understand growth rate
and sequence of
different modes

CFD Laser 2 Confirmatory Visual Contour plots or
Fourier
decomposition

Computational
model

Follow-up Laser 1

fMRI Confirmatory Visual Structural or
functional brain
images

Controlled
experiment

Identify areas of neural
activity; evaluate
experiment predictions

Neural spikes Exploratory Visual Neural spikes Surgical
observations

Isolate single cell firings
to distinguish real from
spurious neurons

Psychology 1 Exploratory Numeric Numerical in
spreadsheet

Controlled
experiment

Seek evidence for
strategies among
subjects

Psychology 2 Exploratory Numeric Numerical in
spreadsheet

Controlled
experiment

Understand relation
between subject and
model data

Note. CFD = computational fluid dynamics.

To formally code conceptual simulations, we adapted Trafton’s spatial transformation
framework (Trafton, Trickett, & Mintz, 2005). Spatial transformations occur when a spatial
object is transformed from one mental state or location into another mental state or location.
They occur in a mental representation that is an analog of physical space. They can be
performed purely mentally (e.g., purely within spatial working memory or a mental image)
or “on top of” an existing visualization (e.g., a computer-generated image). (See Trafton
et al., 2006 for more on spatial transformations.) This initial representation provides the
starting point for a conceptual simulation. Therefore, we first identified references to a new
representation. We then performed a spatial transformation analysis on the utterances that
immediately followed to determine whether any mental operations were applied to transform
that representation. Some possibilities include rotation, modification (by addition or deletion),
moving an image, animating features, and comparison. Finally, we identified the reference to
the result of the transformation(s). Conceptual simulations may thus be defined formally as a
specific sequence:
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Table 3
Examples of CS

Source Utterances Code Explanation

Astronomy In a perfect sort of spider diagram CS Reference to new representation
(“spider diagram”)

If you looked at the velocity contours
without any sort of streaming
motions, no, what I’m trying to say
is, um, in the absence of streaming
motions

CS continued Reference to transforming
representation (mentally removing
existing streaming motions)

You’d probably expect these lines
here [gestures]to go all the way
across, you know, the ring

CS continued Reference to result (sees what
happens)

CFD submarine It is conceivably possible that this
curve is floating around all over the
place, and what they’re showing is
an average [scientist is looking at a
graphical representation (a curve)
that represents the turbulence]

CS Reference to new representation (“this
curve”)

So if this thing is really floating
around that much, just up and
down, and I’m at the extreme end,
and if I average all of this stuff,

CS continued Reference to transforming
representation

then I may actually still get the curve
right

CS continued Reference to result (sees what
happens)

Note. CS = conceptual simulation; CFD = computational fluid dynamics.

1. Refers to a new representation of a system or mechanism.
2. Refers to transforming that representation spatially in a hypothetical manner.
3. Refers to a result of the transformation (seeing what happens).

Table 3 illustrates examples of conceptual simulation. Note that although a concep-
tual simulation spans several utterances, collectively these are coded as only one con-
ceptual simulation. (See Table 4 for additional examples of conceptual simulation, at
http://www.cognitivesciencesociety.org/supplements/)

2.1.4.2. Hypotheses: Every utterance was examined, and all statements that attempted to
explain or account for a phenomenon were coded as hypotheses—for example, “OK, so now
he’s not showing activation for the motor preparation, so maybe that’s just a function of it
being the first thing he did” (source: fMRI; hypothesis in bold type).

2.1.4.3. Scientific reasoning strategies: We selected several strategies from the scientific
reasoning literature: data focus, empirical test, consult a colleague, tie-in with theory or
domain knowledge, and analogy. Data focused strategies are highly relevant to scientific
inquiry in general and to data analysis in particular. Testing a hypothesis by empirical means
is part of the scientific method (Popper, 1956) and has been much studied in the scientific
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reasoning literature (e.g., Klahr & Dunbar, 1988; Klahr, Dunbar, & Fay, 1990; Schunn &
Anderson, 1999; Vollmeyer, Burns, & Holyoak, 1996). Collaboration (consulting a colleague)
has been shown to be instrumental in solving scientific problems in both instructional and
professional settings (Azmitia & Crowley, 2001; Okada & Simon, 1997). Domain knowledge
is also an important factor in expert performance among scientists (Chinn & Malhhotra, 2001;
Schunn & Anderson, 1999) as is a deep understanding of the tools, instruments, and techniques
used in a given domain (Schraagen, 1993; Schunn & Anderson, 1999). Finally, research has
identified analogy as a powerful reasoning mechanism for science (Dunbar, 1997; Forbus &
Gentner, 1997; Nersessian, 1992a; Thagard, 1992).

Analogical reasoning involves mapping information from one domain or instance—the
“source”—to another—the “target”—in order to make inferences about the target (Gentner,
1989). Different theories of analogy specify different processes by which the mapping be-
tween source and target occurs—for example, structural alignment (Gentner, 1983; Holyoak,
1985), constraint satisfaction (Holyoak & Thagard, 1989), and similarity detection (e.g.,
Gentner & Markman, 1997). During the mapping or alignment phase, regardless of the spe-
cific mechanism by which it occurs, the relevant parts of the source are “applied" to the
target, and inferences about the target are drawn. Alignment thus involves an explicit or
implicit comparison between two representations and the detection of similarities between
them.

Gentner and Markman (1997) proposed that analogy and similarity are related through the
process of structural alignment. The difference lies in the relative importance of relational
similarity (in analogy) and attribute similarity (in similarity judgments). Whereas analogical
comparisons focus primarily on structural or relational similarity, similarity judgments focus
more on commonalities between attributes or surface features. (Note that “mere-appearance
matches” have no relations in common, and are therefore are not discussed further here.)
Because of the visual–spatial nature of much of the data in these scientific domains, we
expect the scientists to make a significant number of similarity judgments in addition to more
structurally focused analogical comparisons. According to Gentner and Markman, structural
alignment guides the comparison process in both cases, analogy and similarity. Also, in both
cases, the comparison process focuses on alignable differences, which allow a person to
identify on relevant differences between the two entities being compared. We use the term
analogy to refer to comparisons based primarily on structural or relational similarity, and the
term alignment or “alignment by similarity detection” to capture the process of comparison
based primarily on attribute similarity in which one representation is matched up to another
to detect relevant areas of similarity and difference.

To code all these strategies, we identified all utterances that immediately followed a hy-
pothesis that further elaborated the hypothesis, whether they supported or opposed it. Those
utterances were coded as follows:

Data focus—Following Trafton et al. (2005), we coded statements that “read off" data
from the visible display as data focus. Utterances that referred to looking at data in a different
way (such as replotting the data or displaying it in a different visualization), to “tweaking"
data (e.g., by transformation or removing outliers, etc.), or to looking at data that were not
currently on view but that were available were also coded as data focus strategies. See Table
5 for examples of data focus strategies.
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Table 5
Examples of data focus strategies

Source Utterance Explanation

fMRI We can find out what the z-score of that one is, too. Let’s see,
it’s 4.22, 4.23

Read off data

Astronomy Actually, I know that the, this is a naturally weighted method.
If we look at the robust, let’s look at the robust weighted
method

Change visualization

Psychology 1 So I mean this is a post-hoc hypothesis, that we could verify
by looking at the patterns

Examine additional available data

Psychology 2 We have an outlier there. We can get rid of that guy probably
. . . .That’s more than three times the mean standard
deviation

Tweak data (remove outlier)

Empirical test—Utterances in which the scientist proposed to collect additional data were
coded as empirical test strategies. These included experiment proposals, making plans to
run a new experiment, planning to collect additional data for an existing experiment (e.g.,
increasing the sample size), or planning to collect more observational data. Plans to build and
run computational models were also coded as empirical test strategies. Table 6 illustrates the
coding of empirical test strategies.

Consult a colleague—Utterances that refer to showing the data to or asking the opinion of a
coworker or other expert were coded as consulting a colleague: for example, “I’m gonna have
to discuss it with, ah, John when he gets back. And with Bob” (source: CFD—submarine).
(Names have been changed to safeguard participants’ anonymity.)

Tie-in with theory and domain knowledge—Utterances that referred to theoretical un-
derpinnings of the data were identified and coded as tie-in with theory: for example, “But
just in general, if you have, I mean in your, your theoretical ring galaxy of the computer . . . ”
(source: Astronomy). In addition, utterances that drew on domain-specific skills, such as an
understanding of tools and techniques, were also included in this category: for example, “Ah,

Table 6
Examples of empirical test strategies

Source Utterance Explanation

Astronomy Do you think it’s worth getting some more [telescope]
time, just to do an offset plane, or offset velocity?

Collect more (observational) data

fMRI But we also have to be cognizant of the limitations of
the equipment we’re working with. And we are,
like I said, when we collect data again, for
instance, we are going to get the whole brain.

Collect more (experimental) data

CFD (submarine) That means I have to tweak an input parameter on
the flow code. And then re-run it [the model].

Run computational model

Note. CFD = computational fluid dynamics.
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Table 7
Examples of analogy and alignment

Source Utterance Explanation

Astronomy Think of this [points to part of ring
galaxy]as a spiral arm

Explicit analogy between “spiral arm”
(source) and “this” (ring galaxy); scientist
is using the concept of a spiral arm to
make inferences about the behavior of a
system that is not a spiral arm

CFD (Laser 2) So [0–2] is going to be way below the
black line . . . but he’s gonna grow at
roughly the same rate [as 2–0] which is
what you would expect

Alignment: scientist aligns growth rates of
one mode (0–2) with another (2–0), and
with theoretical expectations

CFD (Laser 2) The high modes are supposed to take off.
They’re supposed to run faster, which
means that if that guy took off first, then
he should be like, dominating the whole
action. Now the only possible way that
that can’t happen is if this guy has some
source somewhere, that he’s, like, being
fed. And he is being fed . . . by the
difference of these two guys

Alignment: Scientist aligns his expectation
that mode must be being “fed” with the
data representation, which indicates that
the mode is, in fact, being fed

CFD (submarine) You know what, this is an experiment that
sets in a, in a tube, and they’ve got struts
holding that sucker up onto the floor. I
wonder if I’m seeing the wake of the
struts, which, of course, we don’t have
on our computational model—so that’s
why we don’t see a dip. But we’re still off
by a good few percent, way off there . . .

Alignment: Scientist aligns the experimental
data with his image of the model data, after
accounting for the presence of the struts;
the alignment shows there are still
significant differences between the model
and experimental data

Astronomy It’s, I mean, it seems to make sense, if
that’s operating, if it’s all the same
velocity, it’s probably more or less a
rigid body, so that the whole thing is—I
mean, so does that make sense? No, it
doesn’t really, nah, it’s not necessarily a
right body . . .

Alignment: Scientist aligns the output of his
chain of reasoning that suggests a rigid
body with the actual data, which does not
show a rigid body

Note. Relevant phrases that pinpoint the actual analogy or alignment are in italics; utterances in Roman type
are for context only and were not coded as analogy/alignment. CFD = computational fluid dynamics.

I’m beginning to wonder if we didn’t have enough velocity range all of a sudden” (source:
Astronomy).

Analogical reasoning—Analogical reasoning was coded using the definition and coding
scheme developed by Dunbar (1997). According to this scheme, an analogy exists when a
scientist either refers to another base of knowledge to explain a concept or uses another base
of knowledge to modify a concept. Analogies were coded at a general level, when both source
and target were explicitly identified (e.g., “The atom is like the solar system") and at the level
of the alignment by similarity detection. Table 7 illustrates this coding of analogy.
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2.2. Results and discussion

Eight datasets were analyzed, comprising 331 min of relevant protocol, broken into 3,278
on-task utterances.

2.2.1. Interrater reliability
We used two approaches to establish interrater reliability. First, after one coder had coded

all the data for conceptual simulations, a second independent coder coded 10% of the entire
dataset pinpointing any conceptual simulations. (The data to be coded were selected from 2
domains by the first coder because they contained examples of conceptual simulations and of
sequences that it might be challenging to determine whether they were conceptual simulations.)
To illustrate this approach in the CFD domain, consider the set of utterances in Table 8. The
first coder identified that lines 6 through 12 contained a conceptual simulation in which the

Table 8
Illustration of initial approach to coding CSs

No. Utterance Coding

1 Was outrun by the next one down
2 And I don’t know
3 I just don’t know
4 I’ll haveta get someone else’s interpretation of that
5 I don’t understand that
6 The high modes take off CS: New mental representation of beginning state

(display shows end state)
7 They’re supposed to run faster CS: Describes new representation
8 Which means if that guy [mode 1] took off first CS: Mentally follows growth path of mode 1
9 Then he should be like dominating the whole

action
CS: Mentally places mode 1 in relation to mode 2

10 Now the only possible way that that can’thappen CS: Mentally undoes growth path of mode 1
11 Is if this guy [mode 2] has some source somewhere CS: Mentally adds source to representation of mode 2
12 That he’s like, being fed CS: Mentally adds source to representation to mode 2
13 And he is being fed Alignment
14 The only way he gets fed is by the difference of

these two guys [additional modes]
Alignment

15 OK, the, the physics of this is
16 The physics of this is any two modes that can add

up
17 Because of their non-linear action
18 Feed the next one
19 So the mode interacts with itself
20 One-one, to produce a two
21 But one and two can interact and produce a three
22 But three, ah, three minus two can also produce

one
23 So they sort of interact among themselves

Note. Source: Laser 2. CS = conceptual simulation.
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speaker was trying to reconstruct how one of the modes could have grown at a slower rate than
another. The first coder ended the conceptual simulation at line 12, noting that in lines 13 and
14, the scientist aligned the end result of the mode being fed with the displayed representation
of the final growth of the other modes involved. The remainder of this section was not coded
as conceptual simulation because the scientist is recalling theoretical information about the
way the modes interact. The second coder then reviewed this entire section, embedded within
a much larger context of several previous and subsequent utterances, to determine whether a
conceptual simulation occurred; and, if so, which utterances it spanned. We initially took this
coarse-grained approach to establish that conceptual simulations could be reliably isolated in
the speech stream. This approach resulted in 98% agreement, k = .91, p < .01.

Second, we performed a finer grained analysis, coding for each utterance whether it was part
of a conceptual simulation. The same first coder’s ratings were used. We then selected 33%
of the entire dataset for coding by yet a third independent coder. We divided each session’s
data into three equal parts based on the number of utterances and selected the first, second,
or third section at random from each dataset. As a result, the third coder coded one third
of each dataset; collectively, the sections represented early, middle, and late analysis on the
part of the scientist. The first coder’s ratings were not available to the third coder at any
time during the process. To summarize the difference between the two rounds of coding, in
the first, coarser grained round, the second coder identified given sequences of utterances as
comprising a conceptual simulation or not. In the second round, the third coder identified line
by line whether each utterance was part of a conceptual simulation.

The third coder was trained to recognize conceptual simulations by using examples that
were not part of the to-be-coded data (see Appendix A for more information about the
training). The coder examined each utterance and judged whether the speaker referred to
a new representation; whether, immediately afterward, the speaker referred to one or more
mental operations that transformed that representation (spatial transformations); and whether
the speaker referred to the result of those transformations. If the coder observed this sequence,
the individual utterances were scored as part of a conceptual simulation. Utterances that did
not contribute to this sequence were scored as “no conceptual simulation.” The third coder
worked entirely independently of the first coder. The coders conferred once after the third
coder had coded one dataset to resolve any questions or difficulties on the part of the third
coder. After this initial conference, the two coders did not compare their judgments until
the coding was complete. Agreement for this phase of the IRR coding was 98%, k = .75,
p < .05.1 The level of agreement between the coders was thus good. All disagreements were
resolved by discussion.

2.2.2. Conceptual simulations
There were 37 conceptual simulations throughout the protocols, an average of one con-

ceptual simulation approximately every 9 min. Considering the large amount of time spent
on other activities (such as choosing and setting up different visualizations, reading off data
from the visualizations, etc.), conceptual simulations occurred with sufficient frequency to
be considered a real strategy used by the scientists. The frequency with which it was used
compared with other strategies is discussed below.
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There were 71 hypothesis statements, an average of 1 hypothesis approximately every 4.5
min. Fifty-five (77%) of these hypotheses were elaborated (i.e., the scientist further considered
the hypothesis). Only elaborated hypotheses were included in subsequent analyses.

Thirty-two (86%) of the conceptual simulations occurred in reference to a hypothesis.
Thus, the vast majority of conceptual simulations were coupled with the scientists’ efforts
to construct a satisfactory explanation of their data. We focus our analyses on how these
conceptual simulations were used. (When conceptual simulation did not immediately follow a
hypothesis, it was used as a problem-solving strategy, such as to resolve a difficulty in mapping
between the display color and changes in velocity, to determine the circumstances under which
a phenomenon might diverge from a theoretical model, or to account for a discrepancy.)

We then investigated the relative frequency of conceptual simulation compared with other
strategies. Each individual utterance of data focus and tie-in with theory/domain knowledge
was counted as one instance. For example, the utterance, “If I look at the average of that,
it’s a nice clean spike,” and the utterance that immediately followed it, “and I can look at
the standard deviation around that and it’s pretty tight right in the middle where it needs
to be,” were coded as two instances of data focus (average, standard deviation) because the
information extracted was different in each utterance. In all other cases, the number of overall
strategy uses was counted. For example, the sequence of utterances in a conceptual simulation
was coded as one conceptual simulation.

First, raw frequencies for each strategy were counted, as shown in Table 9. Clearly, the
most common strategy was data focus (i.e., strategies that centered on the available data as
opposed to those whose focus was beyond the current data). This result is not surprising,
given that the scientists’ task was data analysis. However, among the strategies that focused
beyond the immediate data, tie-in with theory/domain knowledge, conceptual simulation, and
analogical reasoning/alignment occurred most frequently. We expected that expert scientists
would draw on their extensive domain knowledge in understanding and analyzing data, as
discussed earlier. Similarly, the use of analogical reasoning as a strategy in scientific enquiry is
well documented. However, the relatively large number of conceptual simulations is striking

Table 9
Frequencies of occurrence of hypothesis-evaluation strategies—Total number of
uses (raw frequency) and percentage of all hypotheses for which strategy was used
(relative frequency)

Strategy Raw Frequency Relative Frequency (% Hypotheses)

Data focus 229 65
Tie in with theory 51 35
Alignment 32 47
Conceptual simulation 32 46
Empirical test 3 .05
“Far” analogy 2 .04
Consult colleague 1 .02

Note. Because more than one strategy might be used with a given hypothesis,
these percentages sum to more than 100.
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and provides evidence that conceptual simulation is an authentic reasoning strategy used by
experts performing naturalistic tasks in their own domain.

Interestingly, proposing to collect more data and consulting colleagues occurred only rarely.
Possibly, in the first case, the real-life expense (in time and money) of collecting more data
made this a less attractive option than in laboratory studies of scientific reasoning, in which
empirical test is frequently only a mouse-click away. Because several of the data analysis
sessions involved more than one scientist, these scientists may have been less inclined to
consult others, given that they were already working collaboratively (the single instance of
this strategy occurred in an individual subject case).

In addition to raw frequencies, the relative frequency of each type of strategy was calculated,
also shown in Table 9. For this analysis, we identified whether a strategy was used in reference
to each hypothesis. Table 9 shows the percentage of hypotheses for which a given strategy
was used at least once (i.e., repeated uses were not counted). As expected, the results of this
analysis again show the prevalence of strategies that focus on the data. However, in terms
of strategies that focus beyond the data, conceptual simulation was used as frequently as or
more frequently than any other strategy. This again suggests that conceptual simulation plays
a significant role in scientists’ consideration and evaluation of hypotheses.

The use of analogical reasoning is also of interest. There were only two instances of general
analogy, compared with 32 alignments. This result is consistent with findings of other studies
in which analogy use has been found to be more “local" than “global" (Dunbar, 1997; Saner
& Schunn, 1999). The use of alignment by similarity detection in relation to conceptual
simulation is discussed in more detail below.

We proposed that conceptual simulation would help scientists to resolve informational un-
certainty by allowing them to evaluate their hypotheses. We suggested that upon encountering
informational uncertainty, scientists would develop a possible explanation to account for it. By
then running a conceptual simulation, they would be able to play out the necessary details of
that explanation, creating a new representation in order to “see what happens.” The resulting
representation could then function as a point of comparison with the actual data representa-
tion. Insofar as the two representations match, the hypothesis would be at least supported and,
therefore, still offer a plausible explanation. If the relevant details do not match, the hypothesis
would have to be rejected.

Trafton et al. (2005) have shown that scientists frequently use alignment to connect internal
and external representations; consequently, we hypothesized that alignment by similarity de-
tection would be used by these scientists to link the internal (result of the conceptual simulation)
and external (phenomenon in the data) representations. Alignment would potentially allow a
direct comparison between the two representations, and thus could facilitate the evaluation of
the hypothesis. If this were the case, conceptual simulation would most frequently be followed
by alignment (in conjunction with a hypothesis); and, to the extent that the issue is successfully
resolved, alignment by similarity detection would mark the end of the reasoning chain.

The next analysis investigates this possibility by focusing on combinations of strategies.
We calculated the frequencies of the transitions from one strategy to the next for all major
strategies (Ericsson & Simon, 1993). In order to understand the more relevant connections
between strategies, we limit our discussion to those sequences that occurred 15% or more of
the time. These frequencies are represented in the transition diagram shown in Fig. 2.
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Fig. 2. Transition diagram showing the relations among strategies. Percentages show the frequency with which
one strategy followed another.

The transitions of primary interest are the frequency with which conceptual simulation
is followed by alignment and the frequency with which alignment occurs at the end of
the reasoning process. Here a very strong pattern is revealed. Conceptual simulations were
almost always (91% of the time) immediately followed by alignment, and this sequence
occurred more frequently than expected by chance, χ2(4) = 99.88, p < .001; Bonferroni
adjusted chi-squares significant at p < .05. Alignments themselves were most likely to end the
chain, a sequence that was more frequent than expected by chance, χ2(4) = 15.81, p = .003.
Post-hoc comparisons showed that alignment at the end of the chain occurred significantly
more frequently than alignment followed by theory, alignment, or conceptual simulation (the
latter comparison was marginally significant); Bonferroni adjusted chi-squares significant at
p < .05. The difference between the frequencies of alignment followed by data focus and
alignment at the end of the chain was not significant. These results suggest that the process
of alignment either resolved the hypothesis under evaluation and thus terminated the chain of
reasoning or failed to resolve the hypothesis, leading the scientist to seek more information
from the display.

Several patterns emerge from the transition diagram in Fig. 2. A hypothesis was most likely
to be followed by data focus, but was also followed fairly frequently by theory or directly by
conceptual simulation. Data focus was almost always followed by more data focus, indicating
numerous sequences in which the scientist focused explicitly on the data themselves. Theory
was also most frequently followed by itself, suggesting that the scientist engaged in in-depth
consideration of theoretical constructs. Theory was also a gateway to extracting information
and to conceptual simulation. None of these sequences was unexpected, given the nature of the
scientists’ tasks. The frequency of the conceptual simulation → alignment sequence, however,
is striking and suggests a tight coupling between the two strategies. It is in this combination
of processes that the hypothesis evaluation took place.
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Fig. 3. Conceptual simulation used as a source of comparison in the alignment process. An anomaly in the external
display functions as the target of the comparison, and the scientist uses conceptual simulation to generate the source
of the comparison.

Figure 3 illustrates this process of conceptual simulation and alignment-based similarity
detection. In this example from the astronomy dataset, the scientists were considering the cause
of some deviations from the expected pattern of velocity contours. One of them proposed a
“streaming motion hypothesis”; he proposed that the existence of streaming motions might
be the cause of the distortion. He then constructed a mental representation of the theoretical
appearance of the velocity contours (“a perfect spider diagram”). He mentally deleted any
streaming motions from this representation (“if you looked at the velocity contours without
any sort of streaming motions”) and identified how the lines would, then, hypothetically appear
(“you’d probably expect [them] to go all the way across the ring.”)—that is, he was able to
“see what happened.” Finally, he made a comparison between this new mental representation
and the image on screen noting that under these hypothetical circumstances, there would be
no deviant segments of the contours (“without any sort of changes here in the slope”). Use of
the word here and gestures to the screen to identify the actual deflected contour lines indicate
the target of the comparison. In summary, the scientist suggested that the cause might be
streaming motions; ran a conceptual simulation of the contours without streaming motions
noting that under these circumstances there would be no deviations in the contours; pointed
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out that, in contrast, there were kinks in the contour lines; and concluded that, consequently,
the streaming motion hypothesis was supported by the appearance of the data.

2.2.3. Relation among hypotheses and conceptual simulations
Why were only some hypotheses associated with conceptual simulation? Although almost

all conceptual simulations followed a hypothesis, not all hypotheses were followed by a
conceptual simulation. In this section, we attempt to tease apart why this might have been so.

In general, a hypothesis represents a scientist’s best guess about an uncertain situation;
however, there may be greater or lesser degrees of informational uncertainty associated with
different hypotheses. If conceptual simulation is a strategy for resolving informational un-
certainty, it should occur more frequently after hypotheses that relate to greater uncertainty.
One way to measure the uncertainty associated with a hypothesis is to consider the scientist’s
knowledge about the phenomenon to which the hypothesis pertains. If there is something
in the data that violates the scientist’s expectations (such as a major discrepancy between
model and data), hypotheses pertaining to this phenomenon are likely to be associated with
significant levels of uncertainty. If, however, the phenomenon itself is expected (e.g., in one
psychology dataset the fact that respondents in the more difficult condition took longer than
respondents in the control condition), hypotheses pertaining to it are likely to be associated
with less uncertainty.

In order to investigate the relationship between the hypotheses and the data, the phenomenon
behind each hypothesis was identified either as expected or as violating expectation. Three
independent coders coded 15% of the data. Agreement between the coders was 87.5%, k = .75,
p < .01; disagreements were resolved by discussion.

After the hypotheses were coded as referring to phenomena that either violated expectations
or not, the use of conceptual simulation and data focus strategies to evaluate each type of
hypothesis was counted. Our purpose was to determine the circumstances under which each
strategy was used; consequently, only the first instance of each strategy use was counted. Table
10 shows the results of this analysis. As expected, there was no significant correlation between
data focus and violate expectation (r = .18, p > .1), suggesting that data focus was a general
strategy that cut across the different types of hypothesis under exploration. However, the
correlation between conceptual simulation and violate expectation was significant (r = .41,
p < .01). Thus, conceptual simulation appears to be a strategy that is closely associated with
the investigation of hypotheses that pertain to violations of the scientists’ expectations (i.e.,
to circumstances under which there are greater levels of informational uncertainty).

Table 10
Percentages of violate expectation and no discrepancy hypotheses
for which conceptual simulation and data focus were used

Variable Violate Expectation No Discrepancy

Conceptual simulation 64% 21%
Data focus 61% 79%
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2.3. Summary of Study 1

The verbal protocols collected for Study 1 provided a rich dataset by which to investigate
the online thinking of practicing expert scientists as they analyze their own data. In the course
of their analysis, the scientists develop hypotheses to account for aspects of the data and then
evaluate those hypotheses in light of both their theoretical knowledge and the data themselves.
The analyses presented above reveal several new findings about the processes by which scien-
tists perform this task. First, they show that scientists use conceptual simulation as a means of
evaluating hypotheses and that they do so relatively frequently compared with other strategies.
We propose that scientists use conceptual simulation to generate a representation of a phe-
nomenon under hypothetical circumstances, which then serves as a source of comparison with
the actual data. The comparison between this hypothetical representation and the data takes
place by a process of alignment by similarity detection, which allows the scientist to evaluate
whether the hypothesis under consideration remains plausible. Finally, these results show
that the use of conceptual simulation is strongly associated with conditions of informational
uncertainty, as opposed to circumstances under which the scientist’s expectations were met.
Study 2 investigates further the relationship between conceptual simulation and uncertainty
by experimentally manipulating the scientists’ expectations.

3. Study 2

Although Study 1 found a strong relationship between informational uncertainty and con-
ceptual simulation, this relationship was correlational. Temporally, the hypotheses preceded
the conceptual simulations, and conceptual simulation was more associated with phenomena
that violated the scientists’ expectations than phenomena that matched them. Together, these
facts support our interpretation that conceptual simulation is a strategy used in situations of
informational uncertainty. However, the results of Study 1 only suggest an association; they do
not imply a causal relationship between informational uncertainty and conceptual simulation.
In order to investigate this relationship further, we conducted a second study in which we
manipulated scientists’ levels of certainty about data they would be examining.

In order to retain experimental control, we conducted Study 2 as a laboratory study. How-
ever, in keeping with our goal to study the reasoning processes of practicing scientists, we
replicated some of the important features of the in vivo Study 1. As in Study 1, our participants
were expert or near-expert scientists, conducting a scientific activity in which they regularly
engaged (in this case, understanding data collected by a third party). In Study 2, we focused
on one domain, cognitive psychology, for which we ourselves had the necessary domain
knowledge to construct realistic materials.

3.1. Method

3.1.1. Participants
Participants were seven cognitive psychologists (4 men, 3 women). Three were advanced

graduate students, 1 was a post-doctoral fellow, and 3 were university faculty.



S. B. Trickett, J. G. Trafton/Cognitive Science 31 (2007) 863

3.1.2. Tasks
We created five tasks related to four topics within cognitive psychology—the Stroop effect,

the “cocktail party effect,” graph interpretation, and the effect on performance of interruptions
(the interruptions topic was divided into 2 tasks). These topics either concerned very well-
known effects or they pertained to research conducted by participants themselves or by other
members of the same lab who had presented talks on this research. Thus, the participants were
familiar with all the topics and were considered expert in some of them.

The format of each task was as follows: A one-page, single-spaced text described a psycho-
logical experiment—the theoretical background and rationale for the experiment (from which
predictions might be drawn) and a brief method section describing the stimuli or tasks used,
the experimental conditions, the participants, and the procedure. The second page contained
a bar graph representing the results of the study and a caption summarizing those results,
including any relevant statistical results. An example of the tasks can be found in Appendix
B.

The information in the theoretical background of the experiment was designed to lead the
participant to have certain expectations about the results. There were two versions of each
task, one in which the results of the experiment matched these expectations and an alternative
version in which it did not. Thus, two within-subjects conditions were created: an Expectation
Violation (EV) condition and an Expectation Confirmation (EC) condition. The tasks were
adapted from real experiments published in the psychological literature. However, they were
scaled down and simplified; in some cases, the results were altered in order to create the two
conditions described above.

3.1.3. Task order
Each participant performed one version (EV or EC) of each of the five tasks. Tasks were

counterbalanced according to a Latin Square design, and the condition for each task was varied
such that each task was seen an approximately equal number of times in the EV or EC version,
and each participant performed either two EV and three EC or two EC and three EV tasks.
One task (the Interruptions task) was created as a sequence of two experiments; in Experiment
1, the expectations were violated (EV condition) prompting a follow-up experiment in which
expectations were confirmed (EC condition). All participants performed both versions of the
interruptions task.

3.1.4. Procedure
Participants were trained to provide talk-aloud protocols while problem solving (Ericsson

& Simon, 1993). They were given the tasks one at a time by the experimenter, and they
were instructed to read the materials aloud. The first page of text ended with the statement,
“The results of this experiment are presented below,” followed by the question participants
were to answer: “What do you think could account for these results?” Thus, participants were
required to propose at least one hypothesis about the experimental results. The extent to which
they reasoned about their hypothesis or hypotheses was left entirely to the participant. Their
responses were recorded by video camera. After completing the tasks, participants were asked
orally whether the results of each task were expected or unexpected to them. The protocols
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were transcribed and segmented, and conceptual simulations were coded as described in Study
1.

3.2. Results and discussion

One task, the “cocktail party effect” task, was excluded from analysis because many
participants found part of the experimental manipulation and the results confusing.

3.2.1. Interrater reliability
One coder coded all of the data, and a second coder coded a subset (10%) of the data. (Ten

percent was sufficient in this study because of the high reliability previously established in
Study 1.) Initial agreement for the conceptual simulation coding was 97% (k = .92, p < .01).
Thus, agreement between the two coders was extremely strong. Any disagreements were
resolved by discussion.

3.2.2. Time on task
Participants spent an average of 49.7 min performing the four tasks, and produced an

average of 422 utterances (excluding participants’ initial reading of the task materials that
described the study). Thus, participants expended considerable time and effort performing the
tasks, at least given that each task involved reasoning about only one experiment and one set
of data.

3.2.3. Use of conceptual simulation
Overall, participants used conceptual simulation 78 times, or approximately once every 4.5

min, on average. This rate was approximately double that of Study 1. One possible explanation
for this difference is that in Study 2, the task was explicitly to account for the data; whereas
in Study 1, the task was to “do what you would normally do in looking at your data.” Thus,
in Study 1, participants had to spend time determining what specific task they would perform
next, how to set up the display to accomplish it, and then actually change the display. In Study
2, apart from reading the introductory text, the entire session was spent trying to explain the
data.

The mean number of conceptual simulations in the EV condition was 3.8, compared with
1.9 in the EC condition. Thus, participants used conceptual simulation twice as often in the EV
as in the EC condition (these were within-subjects conditions). A repeated measures analysis
of variance on these data was significant, F (1, 6) = 12.06, p < .05, showing that participants
were significantly more likely to use conceptual simulation when their expectations were
violated than when they were confirmed. This result held across all subjects and tasks.

3.2.4. Local EV and EC coding
It is possible that the manipulation did not work in the predicted manner; that is, partic-

ipants might not have been surprised by results in the EV condition or might have found
results in the EC condition surprising. In order to confirm that participants were indeed using
conceptual simulation more frequently when their expectations were violated than when they
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were confirmed, a “local” EV–EC coding scheme was applied to the data. A two-stage system
was used to determine whether each conceptual simulation occurred when the participant’s
expectations had been violated or confirmed. First, internal evidence in the protocol was used.
For example, “The effect of interruption doesn’t seem too surprising, because, um, according
to theory, er, the goals decay quickly,” was coded as EC; whereas, “That’s very interesting,
though, because I would have expected something [referring to null result],” was coded as
EV. Second, if there were no explicit statements in a specific task’s protocol that could be
coded as EV or EC, the participant’s self-report from the post-task interview was used. Any
conceptual simulations that occurred with reference to these phenomena were coded as EC or
EV accordingly, regardless of the experimental condition.

Again, one coder coded all the data; a second, independent coder coded a subset (10%)
of the data. Initial agreement was 98% (k = .77, p < .01), which was a very strong level
of agreement. Any disagreements were resolved by discussion. Furthermore, for 76% of the
conceptual simulations, the local coding as EV or EC matched the experimental condition.
Thus, although not perfect, overall the manipulation appears to have worked as intended.

3.2.5. Use of conceptual simulation: local coding
Two instances of conceptual simulation were not coded because the participant was trying

to decide whether the result was surprising. Sixty-eight percent of the conceptual simulations
were associated with expectation violation, compared with 32% associated with expectation
confirmation. A chi-square test showed that conceptual simulation was used when expectations
were violated significantly more frequently than expected by chance, χ2(1) = 12.96, p < .001.
This result echoes the 2:1 ratio of use produced by the experimental manipulation and provides
strong support for the hypothesis that conceptual simulation is a strategy used under conditions
of expectation violation and informational uncertainty.

3.3. Summary of Study 2

Study 2 provides further evidence that scientists use conceptual simulation spontaneously
when reasoning about data, and that they are more likely to do so under conditions of informa-
tional uncertainty. Whereas Study 1 provided correlational support for this hypothesis, Study
2 explicitly manipulated the participants’ level of informational uncertainty by generating
situations in which either their expectations would be met or they would be violated. The
results of Study 2 thus provide experimental confirmation of our interpretation of the results
of Study 1.

4. General discussion and conclusion

These two studies show that practicing, expert scientists use conceptual simulation when
working on naturalistic tasks in their own domain. This result corroborates previous research
that argues for the use of mental experimentation–simulation in both historical discoveries
and contemporary reasoning tasks. However, whereas historically based research depends
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on retrospective and narrative sources, our research finds evidence in the scientists’ online,
verbalized thinking. Furthermore, whereas other studies have identified the use of this type of
reasoning by scientists of varying degrees of expertise working in domains that are not their
own, or on artificial tasks, we have examined the behavior of professional, expert scientists
working in their own domain on authentic scientific tasks.

In addition, our research demonstrates that scientists are more likely to use conceptual
simulation under situations of informational uncertainty. This is shown in the in vivo data,
where conceptual simulation was associated with the evaluation of hypotheses related to
unexpected phenomena, and it is further supported in the experimental study in which levels
of informational uncertainty were explicitly manipulated. Finally, the research shows how
conceptual simulation helps resolve uncertainty: Conceptual simulation facilitates reasoning
about hypotheses by generating an altered representation under the purported conditions
expressed in the hypothesis and providing a source of comparison with the actual data, in the
process of alignment by similarity detection.

In-depth protocol studies, which use fewer participants than are generally involved in exper-
imental research, always face questions about their generalizability. However, the consistency
with which conceptual simulation was used by many individuals, as well as the range of
scientific areas included in this research, suggest that the results of these two studies are likely
to generalize to other scientists, at least insofar as they are performing data analysis. The
use of conceptual simulation may vary in other scientific inquiry tasks, such as generating
predictions from theories or designing experiments to test those theories. In general, however,
we propose that scientists are likely to use conceptual simulation in situations of informational
uncertainty, regardless of the specific task.

The cycle of hypothesis–conceptual simulation–alignment bears some resemblance to ana-
logical reasoning in that one representation (a “source”) is mapped onto another (a “target”),
in order to make inferences about it. The conceptual simulation was the means by which the
scientists generated the source of the comparison. The actual, displayed data representation,
which the scientists were trying to understand, was the target. Alignment by similarity detec-
tion was a form of comparison that allowed the scientist to evaluate the hypothesis in order to
understand something more about the underlying structure of the data representation.

There are, however, important differences between conceptual simulation and analogical
reasoning. First, in the data we examined, the process of alignment was primarily based on
perception because of the visual–spatial nature of the scientists’ data; in analogical reasoning in
general, however, inferences drawn about the target are not necessarily grounded in perception.
Second, analogical reasoning is a memory-based strategy (i.e., similar situations that have been
previously observed are recalled and used to generate predictions for a novel situation). The
protocol data in these two studies, however, suggests that although the initial representation
in a conceptual simulation may be grounded in memory, the transformations that are applied
to it appear to be constructed afresh with each simulation. In conceptual simulation, new
representations are not generated solely by reference to a familiar situation but by taking
what is known and transforming it to generate a future state of a system. Thus, conceptual
simulation may be considered a form of model construction, which is likely to occur when
no easily accessible, existing source for analogy is available. This situation may be similar to
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that identified by Griffith and colleagues, who proposed that when model search and analogy
fail, scientists construct and manipulate mental models (e.g., by means of general structural
transformation; Griffith, Nersessian, & Goel, 2000).

Like analogical reasoning, conceptual simulation can also be considered a type of reasoning
with inductive mental models (e.g., Nersessian, 1992b; Schwartz & Black, 1996b). Although
the term mental model is used frequently, there is wide-scale disagreement about precisely
what constitutes a mental model. In our view, mental models are dynamic and “runnable.” This
means that the components of the model can be set in motion and their behavior and changes
of state can be observed, in a process that mirrors observations of the physical components of
a tangible model. The output of running a mental model is an inference about the outcome of
a particular converging set of circumstances. By animating their mental models, people are
able to simulate a system’s behavior in their “mind’s eye” and to predict one or more possible
outcomes, even for situations in which they have no previous experience (Gentner, 2002).
Conceptual simulation involves transforming (“running”) a representation, and inspecting the
output, a changed representation that becomes the basis for inferences about the data.

Conceptual simulations, like other kinds of mental models, rely on qualitative relations such
as signs and ordinal relations, relative positions, and so on rather than precise numerical repre-
sentation. In general, mental models are particularly instrumental in guiding problem solving
when people lack a formal scientific understanding of a domain (e.g., Forbus, 1983; Gentner
& Gentner, 1983; Kieras & Bovair, 1984). Although the expert scientists in our studies did
not lack formal scientific understanding, they did lack the precise knowledge to immediately
solve the informational uncertainty they were experiencing. Conceptual simulation seems to
have allowed them to engage in causal reasoning about a system, even in the midst of this
informational uncertainty.

As a form of “what if” reasoning, conceptual simulation is also strongly related to the type
of thought experiment discussed by Nersessian (1992b). Nersessian (1992b) also interpreted
thought experiments as a form of reasoning with mental models and proposes that such men-
tal models are “temporary structures constructed in working memory for a specific reasoning
task.” We have argued that conceptual simulations are similarly constructed to meet a specific,
temporary need. Nersessian (1992b) argued for the importance of this type of reasoning in in-
stances of major conceptual change in scientific discovery. Unlike these thought experiments,
which may lead to large-scale conceptual change, conceptual simulations may be considered
small-scale, or “local,” thought experiments. Although we did not observe any major con-
ceptual change in our data, we did witness numerous instances of scientists using conceptual
simulation to get “unstuck” when they had reached an impasse in understanding their data;
in this sense, conceptual simulation may serve a similar function of helping a scientist move
beyond what is currently known.

In general, experts’ domain knowledge provides them with many existing solutions and
analogs on which to draw during problem solving (e.g., Chi, Feltovich, & Glaser, 1981).
Yet, we found true experts generating conceptual simulations rather than retrieving solutions
from memory. We propose that conceptual simulation will be used by experts when they
are working either outside their immediate area of expertise or on their own cutting edge
research—that is, in situations that go beyond the limits of their current knowledge. This
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interpretation meshes with Schraagen’s (1993) observation that conceptual simulation was
used on a task in the domain of gustatory psychology by psychologists expert in domains
other than gustatory psychology, but not by novices or by experts within the gustatory domain.
Although Schraagen was led to conclude that it is therefore an intermediate strategy, his results
are not inconsistent with our suggestion that experts working on a truly novel task in their
own domain would engage in conceptual simulation. The extent to which novices are able
to productively use conceptual simulation in situations of uncertainty remains a matter for
investigation. We predict, however, that novices will be less capable of generating conceptual
simulations because they lack domain knowledge, and that therefore they will use fewer
conceptual simulations than experts.

There are very few studies of expert scientists performing “real” scientific tasks. In his
pioneering in vivo study of molecular biologists, Dunbar (1995) asked, “How do scientists
really reason?” Our studies contribute further to our understanding of how scientists really
reason. Frequently, studies of experts employ problems that are well-understood for an expert
and that can be solved by recalling either this very problem (i.e., by model-based search) or
another that shares the same deep structure (i.e., by analogy; cf. Chi et al., 1981). In contrast, our
studies show experts reasoning about problems for which neither they nor anyone else knows
the answer. In such circumstances, they must construct new models “on the fly,” tailor-made
to the problem and its context. This strategy of conceptual simulation is similar to mental
model-based strategies used by laypeople in reasoning about the everyday world. Expert
scientists, however, have the domain knowledge that allows them to generate predictions that
are accurate and therefore useful in the context of scientific problem solving.

With the current emphasis in science education reform on authentic practice (National
Research Council, 1996), these studies have practical implications for efforts to improve
science in the classroom. Not only does current educational theory suggest that instruction
should be situated in the context of authentic scientific questions to which students genuinely
desire to learn the answer (Barron et al., 1998), but also that students be encouraged to use the
tools and strategies of real scientific practice. Research has already shown the value of having
students generate predictions prior to conducting experiments (White, 1993); however, the
prediction generation process itself has been largely unexplored. It is possible that qualitative
reasoning strategies, such as the use of mental models and conceptual simulation, can be
explicitly taught to students providing them with a more formal means to generate predictions,
specifying their implications, evaluating their accuracy, and identifying potential causes of
discrepancies.

There have been many myths about how scientists operate including the idea of the “lone sci-
entist” toiling in isolation; the belief that scientific discovery is the result of genius, inspiration,
and sudden insight; the assumption that hypotheses should always precede experimentation
and observation; and especially the notion that scientists are unbiased processors of objective
data. Research in cognitive science has helped to dispel many of these myths; the current study
contributes further to our understanding of the processes by which scientific knowledge actu-
ally develops in the real world. It provides evidence to support the claim that science advances
not through the use of mysterious and inexplicable processes unique to a particular group
of geniuses but through the systematic use of everyday processes. Conceptual simulation—a
specific type of qualitative mental model—is one such everyday reasoning process.
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Note

1. After the third coder had completed the coding, a 2 × 2 contingency table was con-
structed counting the number of times the coders agreed there was no conceptual simu-
lation, the number of times they agreed there was a conceptual simulation, the number
of times Coder 1 thought there was a conceptual simulation but Coder 3 did not, and the
number of times Coder 3 thought there was a conceptual simulation but Coder 1 did not.
The nature of the data was such that there were very many instances of “no conceptual
simulation,” which were easy to identify (e.g., lines 2–5 of Table 7). The majority of
coded utterances thus fell into the cell representing agreement on “no conceptual simula-
tion.” However, because percentage agreement does not appropriately take into account
agreement by chance, Cohen’s kappa was used in addition to percentage agreement
(Cohen, 1960). Kappa of .7 is generally considered to represent satisfactory agreement.
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Appendix A: Conceptual simulation training

We want you to read through every line in the protocol and mark it in the following way.
First, you need to ask whether the speaker is creating a new mental representation. One way
to think about this is to determine whether he or she is referring directly to what is currently
on display on the computer screen. If so, there is no new mental representation. If the scientist
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is referring to something in his or her head, you should note that as a new representation.
The new representation could refer to a memory of something he or she has already seen, or
it could refer to a theoretical construct, or it could refer to a hypothetical situation that the
scientist is constructing for the first time.

When you identify a new representation, you should code the utterances that follow it,
using the spatial transformation coding scheme. That is, if the scientist mentally manipulates
or transforms the starting representation spatially, you should code that utterance accord-
ingly. Finally, immediately after any utterances that you have coded as spatially transforming
the starting representation, you should examine the next utterance(s) to determine whether
there is a “result” of the transformations, or an ending representation that is different from
the starting representation. If you find all three components of this sequence, you should
code each utterance as conceptual simulation (CS). For any utterance that is not a part of this
type of sequence, you should code it as no conceptual simulation (No CS).

Example 1

Explanation
Utterance (scientist 1) Utterance (scientist 2) CS Coding (training purposes only)

That might just be gas
blowing from the
star-forming regions

No CS Scientist is trying to explain
what might account for “stuff
all over here” identified
previously

But that’s not a star-forming
region, though, at the
centre left

No CS Identifies feature of current
display

Centre left No CS Searches display to identify area
of interest

That one No CS Identifies area of interest
Maybe this stuff is just sort of

infalling
No CS Spatial transformation: mentally

moves “stuff” from one
location to another. However,
coded as no CS because it
does not follow a reference to
a new representation, or lead
to a changed representation

I mean, you know, if there’s a
big gas cloud . . .

No CS New representation. Coded as
No CS because the
representation is not
transformed.

Infalling as a big blob? No CS Queries explanation
Why not? Why not? Why

can’t gas infall as a big
blob?

No CS Reiterates explanation

The pressure thing tends to
push them apart, though

No CS States domain knowledge

I mean, it seems like there
should be a kinematic
reason for that

No CS States domain knowledge

Ah, I don’t see what it is No CS Unable to resolve
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Example 2 (Continued)

Explanation
Utterance (scientist 1) Utterance (scientist 2) CS Coding (training purposes only)

It seems like the H1 disk here
is offset

No CS Scientist is looking at image of
galaxy and interpreting it

The H1 disk is offset . . . Can
you have that happen?

No CS Questions interpretation

Sure, I, I, well, I think you
can actually

No CS

Umm, I mean, remember,
these things are in the
elliptical orbits

CS New representation (displayed
image does not show anything
about orbits)

Things may be falling kind of
inward as they’re going
around the orbits

CS Spatial transformation: mentally
moves matter from one place
to another, and moves it
around in orbit

The gas pressure is sort of
driving the H1 out a little
bit more

CS Spatial transformation: mentally
moves the H1 from one
location to another

And when it falls back in
because of the dissipation
going on

CS Spatial transformation: Mentally
moves H1 from one location
to another

You could have it offset that
way

CS End result: offset disk

Here are two examples from the astronomy dataset that illustrate this coding scheme. In the
first example, note that although the scientists are trying to explain a particular phenomenon
by proposing different hypothetical situations, and although a new representation is generated,
there is no conceptual simulation, because no spatial transformations are applied to the new
representation. The entire sequence (refer to new representation—refer to mentally transform-
ing representation—refer to result of representation) is not present. In the second example,
there are a reference to a new representation, reference to several spatial transformations
performed on that representation, and reference to an end result of those transformations.
Consequently, each of those utterances is coded as CS.

Appendix B: Sample materials for Study 2

Interruptions

Altmann & Trafton (in press have suggested that there are 3 things that memory for goals
depends on:

1. Rehearsal (you may need to rehearse your goal to remember it later)
2. Cues in the environment (i.e., something in the environment may remind you what your

goal was)
3. The fact that individual goals decay quite quickly (in seconds)
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Fig. B1. Error bars are standard error of the mean. There is a highly significant effect of interruption: Resuming a
task after an interruption takes much more time than lags measured during the primary task. There is no effect of
condition F > 1.

Recently, Trafton ran an experiment to examine how rehearsal affected resuming a task
after an interruption. The task was set up so that participants were working on a goal as they
got interrupted. The experiment used two tasks, a primary task that participants worked on
most of the time and a secondary task that was the “interrupting” task. The primary task was
a complex resource allocation task that had many different goals and many different things
participants could do at any point in time. The secondary task was a dynamic categorization
task (the Ballas task, a lot like Argus).

Participants worked on the primary task for approximately 20 minutes. There were 10
interruptions throughout the 20 minute scenario. Each interruption followed a mouse-click
to ensure that a participant was working on a goal (or, rather, to ensure the participant was
actively working on some task, not just thinking or spacing out). There were two conditions:

� A No Warning condition (NW) where participants were immediately taken to the secondary
task.
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� A Warning condition (W) where participants were given 8 seconds to “prepare” for the
secondary task. Participants were warned they were switching to the secondary task by a
set of “eyeballs” that appeared on the screen. Once the eyeballs showed up, participants
were not able to work on the primary task and were told to “remember what they were
working on.”

All participants were told that when they came back to the primary task, they were to
resume where they left off (i.e., to remember the goal they were working on).

There were 10 subjects in each condition.
The secondary task lasted approximately 45 seconds.
According to Altmann & Trafton, the Warning condition was expected to have a much

faster resumption lag (RL) than the No Warning condition. (A resumption lag is the time it
takes people to resume a task after being interrupted; a regular lag is the time between key
strokes without an interruption).

The results of this experiment are presented above. What do you think could account for
these results?


