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Abstract 

We have investigated actual and perceived human performance associated with a simple task 
involving walking and applied the developed knowledge to a human-robot interaction. Based on 
experiments involving walking at a “purposeful and comfortable” pace, parameters were 
determined for a trapezoidal model of walking: starting from standing still, accelerating to a 
constant pace, walking at a constant pace, and decelerating to a stop. We also collected data on 
humans’ evaluation of the accomplishment of a simple task involving walking: determining the 
transitions from having taken too short a period of time to an appropriate time and from having 
taken an appropriate time to having taken too long. People were found to be accurate in estimating 
the task duration for short tasks, but to underestimate the duration of longer tasks. This 
information was applied to a human-robot interaction involving a human leaving for a “moment” 
and the robot knows how long the task should take and how time is evaluated by a human.  
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1 Introduction 
How long is a moment?  Consider: you have given your elderly mother a personal 
assistive robot and your mother leaves the room for a moment to go take her 
evening pills. She comes back in 10 seconds. Was that too short? What if she is 
not back in 10 minutes? Should the robot go and make sure she is OK? When 
does the robot’s behavior change from being patient, respectful, but prepared to 
assist if appropriate to being impatient, distrustful, and overprotective? At least in 
some instances, it seems to rely on the concept of how long a moment is. 
 
A “moment” is normally not a specific measurement of time. It is one of those 
commonsense concepts that may be difficult for an assistive social robot to deal 
with because its definition is situation dependent. Our focus is on the innumerable 
daily personal and social activities for which an assistive robot may become 
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involved.  Typical tasks in the home include making a meal, using the restroom, 
getting an item from another room, and checking on a sleeping child. To 
investigate these momentary tasks, we needed a typical task, data on its actual 
performance, and then data on people’s perception of how long the task takes to 
complete. This paper describes a typical task, experiments on its actual 
performance and on participants’ perception of others performing the task, and an 
application to a robot in a social situation. 
 
We chose the common, “I’ll be back in a moment” kind of task where the task is 
well understood and involves being out of sight for much of the task’s 
performance. In such a task, the travel time is commonly the major contributor to 
how long the task takes. Fortunately, the travel time to walk a specific distance 
can be easily calculated using a simple model and the starting and ending points 
for multiple distances can be clearly delineated: the departure from view and the 
return. 
 
Second, we needed to know whether the simple walking model was correct: how 
long does it actually take to perform such a task. We therefore collected data on 
how long it took people to walk various distances and return. From that data, we 
developed parameters for a simple model of walking from point A to point B and 
returning to point A. 
 
Third, we needed to know what people’s perception of the time to perform the 
task is, i.e., how long do we think it takes to perform such a task. Our focus was 
not on the time to complete the task per se, but on the perception itself. For 
example, we wanted to know had the performer taken too long, or too short an 
amount of time for a given distance. We conducted a second experiment to 
explore how long people thought a specific walking task should take. Clearly, 
there should be a relationship between how long a task takes and people’s 
perception of how long a task should take.  
 
The first experiment involved participants walking a short distance, performing a 
simple task, and returning to the starting point. The second experiment involved 
participants watching videos of a person departing and returning from performing 
the same task as in the first experiment. Participants were asked to judge the 
appropriateness of the time interval shown for the task. Finally, we report on a 
social robotic system that uses the information we collected, both the true times it 
took to perform the task and human perceptions of the time it took to perform the 
task. Because walking is the major contributor to the duration of the task, we start 
there.  

2 Background on human walking 
The process of tracking humans and modeling their movements is applicable to a 
wide variety of fields: medical, biomechanical, traffic engineering, computer 
graphics, animation, and mobile robotics. Much research has been done on the 
dynamics of the human body while in motion, particularly walking [1, 2]. 
However, we are less concerned with the details of limb and joint movement than 
we are with the overall movement of the body while walking. Constant walking 
speeds are well documented [3, 4], but this is only part of the solution because 
acceleration and variable speeds may be significant contributors in short trips. 
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Research supporting reasonable computer-generated visualizations of walking is a 
source of information, since virtual people in video games and computer 
animations are expected to act in a realistic manner and their motions are often 
generated by algorithms [5]. The task of calculating a person's progress along a 
known path from a known or estimated starting state consists primarily of 
estimating their speed and acceleration, which is increasingly important as the 
length of the path decreases. Possible models with increasing accuracy and 
complexity are a single speed with no acceleration, linear acceleration with a 
constant cruising speed, and a more accurate model using cubic polynomial to 
match observed velocities as was done by Brogan and Johnson [5]. 
 
A single speed model with no acceleration consists of simply dividing the distance 
by an average speed, resulting in the time it will take to travel a distance. This 
type of model could be adjusted with additional speeds for different portions of a 
path (uphill vs. downhill for example) or the single speed could be set to the 
average expected speed over a path (this approach would tend to be path 
dependent). This type of model is the simplest computationally, but obviously 
inaccurate for short distances where acceleration and deceleration times are 
significant contributors to the overall time. 
 
Pedestrian traffic literature [3, 6] tends to report velocity as a single value, 
ignoring acceleration completely, but the similar speeds reported for crossing 
different size roads indicates that acceleration is not a significant factor (at least in 
road crossing averaged over a population). This research suggests that people 
accelerate quickly relative to the speeds and distances involved. 
 
However, humans do not move a constant speed due to their bipedal locomotion. 
Figure 1 shows a three-phase model of human trunk speeds including oscillations 
with each step. An average speed during the rhythmic phase is drawn and similar 
straight lines could be used for the acceleration and deceleration phases. This 
would result in a trapezoid model [7, 8]. 

 

 
 

Figure 1. Phases of human walking  
 
Simplifying this figure into a trapezoid model consists of a linear acceleration to 
the cruising speed (specified over a set time or at a set rate) followed by a period 
at a constant cruising speed and finally a linear slowdown to stop. For our 
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discussion, we will focus on a straight path without obstacles, hazards, or 
significant walking surface changes. The constant cruising speed is also affected 
by the motivation and capabilities of an individual. For higher accuracy, the 
speeds used in the model could be tailored to the specific person of interest. 
 
Clearly human motion does not consist of piece-wise continuous linear functions, 
but such a model can be used to reasonably approximate the speed at which a 
person is moving, given knowledge of their progress through a given path. Brogan 
and Johnson [5] explicitly measured the velocity profile of the participants while 
changing speed and found it to be similar to a cubic polynomial. The polynomial 
was modeled as a lie segment (linear acceleration over a fixed distance). They 
used an acceleration distance of 1.82 m (5.9 feet) and a deceleration distance of 
1.63 (5.33 feet) because stopping was found to occur faster than starting 
approximately 10 percent). The computational advantages of linear over cubic 
velocity ramping are obvious.  
 
A cubic acceleration profile could be simplified to a trapezoidal model. The main 
difficulty with such a model is the computation of velocity and position from the 
curve. The cubic model should be more accurate during acceleration and 
deceleration than the trapezoid, but with a well-chosen linear velocity acceleration 
value, the difference between the cubic and trapezoid models should be 
insignificant for distances greater than about 4 m (12 feet). 
 
One obvious deficiency of the trapezoid model is the selection of the cruising 
speed. The problem is that speed tends to be specific to the individual [4] and the 
circumstances [3]. It should be noted that [3] found the mean street crossing speed 
of pedestrians under the age of 65 to be 1.51m/s (4.95 ft/sec) while [4] found the 
mean comfortable speed for adults in their 20s to 70s to be 1.45 m/s (4.79 ft/sec) 
or less. These results may be effectively (and statistically) the same. Bohannon [4] 
indicates that walking speeds (both comfortable and maximum) depend on height, 
weight, and leg strength; with the difference between comfortable speeds being as 
high as 0.19m/s (0.62 ft/sec) (the difference in cruising speeds was much greater. 
This leads to the conclusion that a value for cruising speed should consider 
individual differences and motivation (or situation) for high accuracy.  
 
Ideally, a system for modeling human walking speed/progress would have 
knowledge about the walker (height, weight, and leg strength), the path (distance 
and obstacle information), and the situation (motivation of the walker relating to 
speed). Given this information, a trapezoid model could provide highly accurate 
walking time predictions. With this background, we conducted an experiment to 
determine parameter values for the trapezoidal model of human walking 
performing a specific, but typical, “back in a moment” task. 

3 Performing a simple task involving walking 
The first experiment was a simple task focused on walking. The goal was to 
establish the parameters for a trapezoidal model of walking.  
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3.1 Method 

3.1.1 Participants 

Twenty-eight students attending George Mason University participated for class 
credit. There were 9 men and 19 women ranging in ages from 18 to 40 with a 
mean of 21. Their heights ranged from 1.58m to 1.91m (62 to 75 inches) with a 
mean of 1.71m (67 inches). 

3.1.2 Task Design and Procedure 

Participants were asked to walk at a “comfortable and purposeful” pace, in an 
empty indoor hallway. For each trial, the participant started from a stationary 
standing position on a line taped to the floor, walked a specific distance down an 
empty, indoor hallway to a doorbell against the wall (see Figure 2), pressed the 
button for the doorbell, and walked back to the starting line and stopped standing 
on the taped line. The distances were 15.2m, 30.4m, and 45.6 m (50, 100, and 150 
feet) one way. Data was collected for five consecutive trials at each distance with 
the distance for the block of trials randomly ordered. Longer distance under the 
same conditions, i.e. straight indoor hallway, were not available nearby. 

3.1.3 Measures 

Two times were recorded for each trial using a digital stopwatch. The first was the 
time from the start of motion to the pressing of the doorbell. The second was the 
time from the start of motion to stopping upon return to the starting line. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Doorbell and button to be pushed at the turning point in the task 
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3.2 Results 

The mean times for each subject to perform the complete task for the three 
distances were about 1 second more than 20, 40, and 60 seconds, respectively, as 
shown in Table 1.  
 
Table 1. Mean performance times (with standard deviation in parentheses) for a simple task 
involving walking.   
 

Distance 
(one way) 

Time to ring  
Doorbell in 
seconds 

Time to 
complete task  
in seconds 

15.2m 
(50 feet) 

11.3 (1.35) 21.8 (2.78) 

30.4m 
(100 feet) 

21.3 (2.54) 41.7 (5.18) 

45.6m 
(150 feet) 

31.2 (3.66) 61.1 (7.04) 

 
To examine the relationship between walking speed and gender, age, and height, 
we took each participant's average walking speed for each trial and performed a 
correlation between speed and each auxiliary variable.  There was no relationship 
between walking speed and gender, r(26) = -0.15, p = 0.5, walking speed and age, 
r(26) = -0.24, p = 0.22, or walking speed and height, r(26) = 0.02, p = 0.9.  

 3.3 Analysis 

The goal of this experiment was to establish the parameters for a trapezoidal 
model of walking. We assumed that the acceleration and deceleration periods 
could be treated as equal given their small contribution to the overall task. We 
also assumed participants walked at the same cruising speed independent of the 
direction and distance involved for these relatively short distances, i.e., there was 
no significant fatigue and their speeds were constant for the duration in both 
directions. At the turning point in the task, we assumed that the time to push the 
doorbell and turn around were insignificant and included with the walking 
portions of the task such that we could ignore the time to perform that small part 
of the task. Overall, the only parts of the task that contributed to the data collected 
were the acceleration/ deceleration times and the cruising speeds. With these 
simplifications, the two data points taken for each task could be transformed into 
the two parameters for the trapezoidal model of walking. 
 
This resulted in: 
 

 cruising speed    =  1.56 m/s (min: 1.27, max: 1.92, SD = 0.18) or 

5.12 ft/sec (min: 4.16, max: 6.29, SD = 0.57)  

 and time to achieve cruising speed or to slow down and stop 

  =  0.64 sec (min: 0.21, max: 1.15, SD: 0.22). 
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3.4 Model 

From analysis of walking data and the two parameters, the predicted times for 
participants to walk to the doorbell and press the button (“time out”) and the time 
from the start until they complete the task (“time back”) are: 

time out = 2 * (time to achieve cruising speed) + (distance/cruising speed) 

      = 1.28 sec + (distance) / (1.56m/s or 5.12 ft/sec) seconds, and 

time back  = 4 * (time to achieve cruising speed) + 2 * (distance/cruising speed) 

= 2.56 + (distance) / (3.12m/s or 2.56 ft/s) seconds. 

 
The model can be evaluated in two different ways:  compared to mean 
performance and compared to individual performance.  As Figure 3 suggests, the 
model captures mean performance quite well; all 3 model points are within 95 
percent confidence bars of the empirical walking distances and RMSD of the 
model is 0.11. 
 
A second way to evaluate the model is to compare the model to each individual 
participant’s average for each distance walked.  In this case, the RMSD was 2.7, 
5.1, and 6.9 for 50, 100, and 150 feet, respectively.  These RMSD values are a 
consistent 12 percent error.  Additionally, we ran a correlation between each 
individual participant’s average for each distance walked and the model 
prediction; r2=.90, p < 0.05.  This model thus accounts for 90 percent of the 
variance at the individual level. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Reality and trapezoidal model of performing a simple task involving walking  

(the bars are mean value of 28 participants, error bars are 95 percent confidence intervals,  

and circles are model predictions) 
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3.5 Discussion 

We found that the trapezoidal model of walking is quite good at estimating how 
long it takes people to walk distances of about 15, 30, and 45 meters (50, 100, and 
150 feet) and return under the conditions of our experiment: indoors, 
unobstructed, and motivated to walk in a “purposeful and comfortable” pace. The 
small size of the standard deviations of the model and the experimental 
measurements for the overall task (as shown in Figure 3) and for the half task (up 
to pushing the door bell, not shown) support this.  
 
We expect this model would be useful for predicting human walking for arbitrary 
but relatively short distances under similar conditions, such as the many simple 
daily tasks that take “just a moment” around a person’s home or group home. 
Unlike more general population walking data [3, 4, 6, 7], we found no effect of 
the walkers’ sex, height, or age. Of course, our participants were university 
students who perform a lot of purposeful walking and may be unusually practiced 
at “purposeful and comfortable” walking at the same speed as others. Had we 
obtained participants at a shopping mall or elder care center, we expect we would 
have had a wider variation in observed walking speeds. 
 
With knowledge of the actual performance of a simple task involving walking, the 
next question is how people evaluate others performing such a task. That is the 
subject of the second experiment. 

4 Evaluation of the duration of a simple task 
What do you do when someone you are working with needs to leave for a moment 
but does not come back for a while? There are several different approaches to this 
everyday event. You or a personal assistive robot could mentally simulate the task 
step by step or could recall previously recorded performance times for similar 
tasks or could numerically calculate an appropriate expectation. There is evidence 
that people are good at estimating short time intervals, under a minute, but not for 
longer intervals [9-11] and there is evidence that scientists use mental simulation 
only when they have to [12]. We expect humans would expect the same 
capabilities they have to be in their assistive robots [13, 14]. Our second 
experiment was intended to discover how good people are at evaluating a 
moment, i.e., the duration of the performance of a simple, but unobserved, task. 
 
We looked into how accurate people are at evaluating the time to perform a 
simple task that involves walking. The typical scenario is having a companion 
who goes away for a moment; say she goes to another room in the house, 
performs a simple task like retrieving her evening pills, and returns. Further, 
presume our companion is out of sight for most of the time, i.e., we cannot watch 
the task being performed. The issue is then not how good or poor we are at 
estimating distances, walking speeds, and calculating time intervals numerically, 
but how good we are at predicting task completion events. We want to know how 
well people do at this evaluative task so that a robot can appropriately provide 
assistance such as questioning whether the task was actually performed (or was it 
forgotten) or could investigate or call for help if there is something seriously 
wrong based on taking too long. Our hypothesis is that a system that represents 
and reasons like people do will be better at dealing with people respectfully and 
appropriately than one that does not [15, 16]. In accordance with our hypothesis, 



9 

our second experiment investigates whether there is a difference between actual 
performance and our reasonable expectations. 

4.1 Method 

4.1.1 Participants 

Twenty-five George Mason University students participated for course credit. 
There were 11 men and 14 women. Their ages ranged from 18 to 35 years with a 
mean of 20.4. None of these students had participated in the previous experiment. 

4.1.2 Task Design and Procedure 

Each participant evaluated videos of performance of the first experiment at the 
same three distances, 15.2, 30.4, and 45.6m (50, 100, and 150 feet) (one way 
distances down an empty, indoor hallway) and classified the video as the person 
having taken “too long”, “about right” or “too short” to perform the task. A 
computer program presented a series of videos for one distance and participants 
provided their evaluations until the transition points between their assessments of 
“too long”, “about right”, and “too short” were identified. They then worked on 
another distance until they had identified transition points for all three distances. 
The ordering of the three distances to be evaluated was randomized for each 
participant. 
 
Each video started by showing the distance to be walked and then the image of a 
person leaving the doorway to perform the task and eventually returning. The 
distance to be walked was presented at the beginning of every video by showing a 
walker’s view of the distance and panning the camera from looking down at the 
starting position on the floor, up to horizontal showing the doorbell in the distance 
(see Figure 4), and then back down to the starting position. In this way, the 
participants were shown but not told the distance involved. Following this display 
of the walking distance, the camera position was shifted to inside a room off the 
hall and looking out a doorway into the hall to see just the feet of a person, the 
walker. It was not clear whether the person walking was male or female. The 
video then showed the walker leave the doorway area and, after a variable period 
of time with the screen showing just the empty doorway, the walker returned into 
view and stopped at the starting position. Participants were then asked to judge 
whether the person in the video took “too long,” “too short,” or “about right” time 
to perform the task. Based on their response, the computer system selected the 
next video. The videos were constructed in one-second intervals from 5 seconds 
to 2 minutes of walking time.  
 
As a final note, the experimental design, with its alternate testing of the two 
thresholds, was intended to reduce the potential for an anchoring bias by subjects. 
Subjects were shown interleaved videos altering between narrowing in on the 
threshold between “too short” and “about right” and narrowing in on the threshold 
between “about right” and “too long”. By this method, subjects were not able to 
use the previous video as a basis for evaluating the next video. 
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Figure 4. Doorbell 30.4m (100 feet) down the empty hall 
 

4.1.3 Measures 

The duration of the video showing the walker’s task performance was varied 
based on the evaluation provided by the participant and which transition was the 
current focus. To explain the data collection, consider that the subject’s evaluation 
of the previous video was that it was “too long” and the current focus was the 
transition between “too long” and “about right”.  Then the next video would be 
longer than the previous video that had been judged to be “about right” and less 
than the most recent video that was judged to be “too long”. This way the 
sequence of videos got closer and closer to the subject’s transition point. When 
the gap between videos with evaluations on either side of the transition was down 
to one second, the transition had been found. This process was also followed for 
the other transition, i.e., between “about right” and “too short”. To minimize 
subject biases, the system alternated working on the two transitions so that the 
subject would not know which threshold was the current focus and just saw a 
series of videos with no obvious pattern of video lengths. This search process 
quickly and reliably found the two transitions for each subject. 

4.2 Results 

The times at which the participants’ evaluations changed from “too early” to 
“about right” and from “about right” to “too late” are shown in Table 2. 
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Table 2. Evaluations of the duration of a simple task involving walking 
 

Task 
Distance 
(one way) 

Range of 
“about right” 
evaluations 

Transition from 
“too early” to 
“about right” 
Mean time (SD) 

Transition from 
“about right” to 
“too late” 
Mean time (SD) 

15.2 m 
(50 feet) 

15 – 32 sec. 16.8 sec. (4.4) 25.5 sec. (4.13) 

30.4m 
(100 feet) 

20.5 - 60.5 sec. 33.0 sec. (11.1) 47.7 sec. (11.8) 

45.6m 
(150 feet) 

34 - 73.5 sec. 40.0 sec. (9.14) 63.4 sec. (12.5) 

 
The transition points bound the range of times the participants considered to be 
“about right” for each distance. Figure 5 shows the middle of these ranges, i.e., 
mean times between the transition points of the task with a 95 percent Confidence 
Intervals. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Mean of transitions between “too short” and “about right” and between “about right” and 
“too long” with 95 percent Confidence Intervals. 
 

4.3 Analysis and Model 

In addition to providing assessments of when is too early and when is too late, the 
range between these transitions provides an assessment of when the walker is 
expected to return. The mean between these transitions for each distance 
compares well with the measured task completion times from experiment 1 as 
shown in Table 3 and Figure 6. 
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Table 3. Comparison of mean (and SD) between transition and actual task completion times 
 

Task Distance 
(one way) 

Mean between evaluation  
transitions, or the “about 
right” time (SD) 

Mean time to 
actually perform 
the task (SD) 

  15.2m 
(50 feet) 21.2 seconds (3.56) 21.8 seconds (2.78) 

30.4m 
(100 feet) 40.3 seconds (10.4) 41.7 seconds (5.18) 

45.6m 
(150 feet) 51.7 seconds (9.82) 61.1 seconds (7.04) 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Reality, trapezoidal model of reality, and perception in human walking tasks (gray bars 
are round trip walking data, white bars are evaluations (perception), and circles are modeled data; 
error bars are 95 percent Confidence Intervals). 
 

4.4 Discussion 

The trapezoidal model of the walking is accurate in estimating the time to actually 
walk each of the three distances. However, means of people’s estimates are 
accurate as well but only for the first two distances (within the 95 percent 
Confidence Intervals, see Figure 6) and less than the actual time for tasks 
involving taking approximately one minute (clearly not within the 95 percent 
Confidence Intervals). This result is consistent with the literature that we are 
accurate in time estimates up to 45-60 seconds and poor above.  
 
It is also interesting to note that the variation of the participants’ estimates for the 
“about right” performance did not grow linearly with the length of time involved.  
 
In summary, we have shown that people are reasonably good at estimating how 
long someone should be gone if it is a short distance and the “moment” is less 
than a minute, but tend to under estimate on longer distances and “moments”. 
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With this information, we can apply this information to have a personal assistive 
robot behave appropriately when someone is gone to perform a task that takes just 
a moment. 
 

5  Application to human-robot interactions 
We applied this developed knowledge of actual and perceived performance of a 
simple task to a mobile robot to demonstrate appropriate human-robot interactions 
in the course of human absences from the immediate area of human-robot social 
interactions in accordance with our representational hypothesis.  

5.1 Robotic System 

The robot we used is an iRobot B21r. It is a human-scale robotic platform with a 
zero-turn-radius and designed for indoor environments. The robot has a set of 
sensors and effectors associated with movement and a flat-panel display with an 
animated face [17, 18]. The raw inputs from the sensors are processed by onboard 
software and converted into symbolic, feature representations for use by our 
cognitive model in real time. Cognitively driven requests for movement of the 
robot are passed from cognitive model to the robot’s motion control subsystem 
[19]. Speech output requests are sent to a commercial speech generation system, 
Cepstral. The animated face is synchronized with the speech output and turns to 
face the appropriate direction to indicate a change in visual attention. 

5.2 Cognitive Model 

We built a cognitive model for the robot that noticed when a human companion 
left the immediate area, noted where the human said he or she was going, and 
acted appropriately if they did not return as expected. 
 
The cognitive architecture we used started with ACT-R [20]. We modified and 
embodied it in a robot as ACT-R/E [21]. The basic system is a hybrid 
symbolic/sub-symbolic production-based system. It has modules that are intended 
to represent specific cognitive functions such as visual and auditory perception, 
declarative (fact-based) and procedural (rule-based) memory, manipulation, 
vocalization, and time perception. These modules each have anatomical 
correspondences with recent fMRI data [20]. Our additions provide for processing 
of the robot’s visual and auditory sensors, localization of the robot, and its 
movement to arbitrary locations.  
 
The ACT-R/E system includes a time estimation module based on the work of 
Taatgen, Rijn, and Anderson [22]. This module provides a logarithmic 
accumulator for the passage of time and includes variations in its measurements to 
match human performance in a range of prospective time estimation tasks. 
 
A cognitive model implemented in the ACT-R/E architecture is primarily an 
initial set of declarative and procedural memories that determine behavior. The 
architecture repeatedly matches the conditions of all productions against the 
current state of the buffers associated with its internal modules, selects one 
production to fire serially, and through the firing of that production modifies 
buffers or makes functional requests of modules which result in updates to 
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buffers, and the cycle repeats. Module request cause actions by the robot 
involving the environment, such as visual sensing and movement of the robot to a 
specified location. 
 
Our model is initialized with two times to complete the task at each of several 
distances. The first time is based on using the trapezoidal model and parameters 
derived from the first experiment. It is the robot’s estimate of the accurate time for 
a human to complete the task. The second time is the mean time of the evaluated 
transition from an “about right” duration to having taken too long. This data came 
from the second experiment. 

5.3 Resulting Behavior 

When the robot needed to estimate how long a task that is performed by its 
companion should take, the system retrieves both times. Using the robot’s internal 
time module, when the internal time estimate reached the mean time of the 
transition of humans’ assessment from having taken “about right” amount of time 
to having taking too long, the robot comments on the fact. This allows the 
remaining humans in the area to be patient and wait until the actual performance 
time. When the time exceeds the mean actual time for having taken too long, the 
robot acts and goes looking for its companion. (We used the mean time to perform 
the task plus one standard deviation.) While waiting for the companion to return, 
the robot with such a cognitive model could perform other actions.   Video is 
available at http://www.mllab.com/WalkBot/WalkBot.htm. 

5.4 Discussion 

Implementing a cognitive model using the information developed on how humans 
perform a simple task involving walking and how they evaluate the performance 
of such a task raised an interesting issue. While we found that humans may be 
quite consistent and predictable in their “purposeful and comfortable” walking 
task, their evaluations of such performance were not accurate. As a result, a robot 
has two different answers for how long is too long to perform a simple task 
involving walking: how long humans think it takes to perform a task and how 
long it actually does take. For short time periods, up to 45 seconds or one minute, 
the two times are effectively the same because people are good at such 
estimations. However, starting with slightly longer times, a minute or longer, 
humans expect tasks to take less time than they actually do. An issue for our 
implementation was that a human would consider the companion too late before 
the robot would. We chose to implement the robot commenting when the human 
would be erroneously expected to have returned and had the robot act when the 
companion had actually taken too long plus one standard deviation. An alternative 
implementation would have been to have the robot act when a remaining human 
would consider the missing teammate too late, which is prior to when they are 
actually being late. Our implementation, therefore, integrates both sources of 
knowledge on human performance of simple tasks involving walking. 
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6  General Discussion, Limitations, and Future 
Work 
 
We report the results of measuring university students performing a simple task 
involving walking, evaluating another person performing the same task, and then 
we report on implementing these results in a robot. We found that when our 
participants were asked to walk at a “purposeful and comfortable” rate, their 
performances were very consistent and their walking could be accurately 
characterized using a trapezoidal model. When we asked other participants to 
evaluate the appropriateness of the task performance times shown in videos, their 
evaluations of too early, about right, and too long were much more inconsistent.  
However, their evaluations of performance times for tasks of relatively short 
distances (50 and 100 feet or 15 and 30 meters) was comparable to the actual 
performance time but participants underestimated the time necessary when the 
people in the videos walked 150 feet or about 45 meters.  Because of this 
difference, implementation of these results in a robot raised the dilemma that the 
robot could either act like a person when evaluating the absence of a companion 
knowing a human underestimates longer tasks or the robot could act on the 
knowledge of the actual task performances and not act like a person. If your 
elderly mother had a guest, the assistive robot could calm the guest if the guest 
would likely underestimate the performance time or, in the opposite case, confirm 
to the guest that assistance may be needed. In our video demonstration, we had the 
robot note when a human would evaluate the performance as too long and take 
action based on when the absence would actually be too long. 
 
The findings of this work have direct implications for human-robot interaction. 
First, we have determined university students’ “purposeful and comfortable” 
walking parameters for a trapezoidal model. Second, we have confirmed that 
people are good at estimating the duration of short tasks, those taking under a 
minute. Third, we have confirmed that people think tasks that take longer than a 
minute take less time than they actually do. With this information, the human-
robot interactions can be informed of the actual and perceived performance of 
simple tasks involving walking. 
 
There are limitations in this work based on the human subjects used, the methods 
used, and the generality of the results.  These experiments used university students 
as subjects. While we may believe they are useful for the evaluative aspects of the 
experiment, they may not be representative of our elderly mothers based primarily 
on the known effects of aging on walkers [3, 4]. In addition, in the referenced 
studies, the elderly walkers are walking outside and without the assistance of 
canes or other devices. Our method attempted to control for different motivations 
of walkers by asking them to walk at a “comfortable and purposeful pace”. In 
other studies, pedestrians crossing a street are also motivated to move quickly.  
However, our elderly parents may not be so motivated and, in the privacy of their 
own homes, may significantly not be so purposeful and this may in turn impact 
their walking speed and variation. Another limitation is that we studied a task 
taking about a minute or less.  If the time involved is much beyond a minute, such 
as a visit to a store by car or an elderly person walking from their living room to 
an outside mailbox and back, then the divergence we report in the evaluations 
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may be greater. Subjects traveling in different environments with different 
motivations and taking more time may require additional study. 
 
Our work lays the groundwork for studies of the social interactions between 
humans and personal assistive robots involving performance of small tasks and 
the perception of a "moment".  Whether people are as predictable and consistent 
in performing the task as our university students were or if the performance is 
unknown and additional data collection is necessary, we have shown that there are 
perception differences between actual performance and evaluations of having 
taken "too long".  In a more general way than we have used, a personal assistive 
robot could collect data on actual performance of their companion and allow for 
observed noise, say a standard deviation or more, before providing assistance. 
Further research or personal choice may be the best way to establish the duration 
of a moment and when the robot would change from being a patient, respectful, 
but monitoring assistant into the robot being perceived as impatient, distrustful, 
and overprotective. 
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