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Enabling Effective Human–Robot Interaction Using
Perspective-Taking in Robots

J. Gregory Trafton, Nicholas L. Cassimatis, Magdalena D. Bugajska, Derek P. Brock, Farilee E. Mintz, and
Alan C. Schultz

Abstract—We propose that an important aspect of human–robot
interaction is perspective-taking. We show how perspective-taking
occurs in a naturalistic environment (astronauts working on a col-
laborative project) and present a cognitive architecture for per-
forming perspective-taking called Polyscheme. Finally, we show a
fully integrated system that instantiates our theoretical framework
within a working robot system. Our system successfully solves a
series of perspective-taking problems and uses the same frames
of references that astronauts do to facilitate collaborative problem
solving with a person.

Index Terms—Cognitive modeling, human–robot-interaction,
perspective-taking.

I. INTRODUCTION

WHAT guidelines should a designer use to create an inter-
face for human–robot interaction? Unfortunately, there

are few overarching theories or models that give good advice
on how to design the interface between humans and robots.
A great deal of work within human–computer interaction sug-
gests that if a designer creates an interface without good guide-
lines, without paying attention to the way that people perceive,
reason, and act, and without evaluation, the interface turns out
to be quite poor [1]–[3]. In other words, a “good idea” from
a designer could turn out to be idiosyncratic or arbitrary for
most users of the system. We suggest that the default approach
for designers should be to use person-to-person interaction as
the model for human–robot interaction. Other models and tech-
niques will doubtless be better in some situations, but, since
people are able to communicate so well with other people, it
makes sense to use interactions between people as the default
model for designing and implementing human–robot interac-
tion. There are, of course, many facets of human–human inter-
action, but we will focus here on one of the most important:
the basic ability of people to take one another’s perspective and
reason about interactions and the world from this alternative
point of view. Perspective-taking has been shown to occur in
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Fig. 1. When told “give me the wrench,” the robot needs to take the perspective
of the person to determine which wrench the astronaut has referred to.

a wide variety of situations and tasks, varying from social situa-
tions [4], [5] to way finding and navigation tasks [6]–[10]. Spa-
tial perspective-taking seems to occur in children as young as
age four [11]–[14] and develops relatively systematically [15].

As fundamental as perspective-taking is for people, it is not
surprising that perspective-taking abilities on robots would be a
valuable asset for people working with them. Imagine, for ex-
ample, how much more effective a robot capable of perspec-
tive-taking would be in helping an astronaut with an assembly
task, even if the robot’s job were something as relatively simple
as giving the astronaut various tools and parts as they were
needed. Fig. 1 shows one possible scenario. The robot and the
person are facing each other. The robot can see that there are
two wrenches in the setting, wrenches 1 (W1) and 2 (W2), but
the astronaut only sees W2, from his perspective because W1
is occluded by an obstacle. If the astronaut says, “Robot, give
me the wrench,” the meaning of the phrase “the wrench” is
ambiguous for the robot because it knows of two wrenches.

1083-4427/$20.00 © 2005 IEEE
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The phrase is unambiguous to the astronaut, though, because
he only sees one wrench. Intuitively, if the robot could take the
perspective of the astronaut, it would see that W2 is the only
wrench in the astronaut’s field of view and could therefore sur-
mise that “the wrench” must refer to W2. Even in this rudimen-
tary scenario, perspective-taking would immediately enhance
the human–robot interaction.

If perspective-taking is likely to be a valuable tool for
human–robot interaction, why are there so few examples
of robots with perspective-taking in the literature? In fact,
one of the only computational systems that uses a form of
perspective-taking has been Soar [16], [17] within a gaming
environment [18]. The Soar system uses perspective-taking and
anticipation to predict what an opponent will do. Our system
focuses more on human–robot interaction, where there are
potentially many possible actions for a robot partner to take.
Interestingly, both our approach and the approach taken within
Soar have an emphasis on cognition and on how people think.
It is likely that a noncognitive system would have a much more
difficult time building a system that uses perspective-taking,
since not only would they have to model the way people think
(which both our approach and Soar do), but they would also
need to determine how to use perspective-taking within their
system. Additionally, a robot requires substantial computational
resources just to represent the world from its own perspective,
and clearly, even more resources would be needed to represent
the world from the perspective of a human counterpart. Add
to this a requirement to quickly react to dynamic factors in
the task environment and possibly account for the presence
of additional participants, which entails the representation of
more perspectives, and the issue of computational resources
is only compounded. Second, representing the perspective of
humans requires a robot to integrate multiple data structures
and algorithms for perceiving, representing, and making in-
ferences about the world from that perspective. For example,
in a task where a robot and a person are cooperating to fix a
vehicle, aspects of the person’s perspective that can affect their
interaction include his spatial location (he might be able to see
things from his location that the robot cannot and vice versa),
his knowledge of the current situation (he may know of a
different method for accomplishing the task than the robot), his
knowledge of the specific task (he may not know of a problem
with one of the parts that the robot knows about), and his lin-
guistic background (he may use words that the robot does not
know). Thus, the common problem in robotics of integrating
multiple subsystems that utilize different data structures and
representations extends to robot perspective-taking as well.

How prevalent is perspective-taking in tasks where robots
may be of assistance? To answer this question, we analyzed
videos of astronauts as they trained for extravehicular activ-
ities (EVAs) in a simulated microgravity environment called
the Neutral Buoyancy Laboratory (NBL) at NASA’s Johnson
Space Center. EVAs are exactly the type of activity researchers
at NASA believe robots would be ideally suited for [19]. As as-
tronauts and ground control worked out procedures and defined
roles, it was immediately evident that spatial perspective-taking
and the use of spatial language are present in astronauts’ work
in these EVA environments.

In space, astronauts have to deal with frames of reference
and spatial situations in ways that people on earth typically do
not encounter. Down can easily mean something completely
different in a weightless setting than its normal, earth-bound
sense of toward the ground. Despite the potential for confusion,
astronauts seem to have no problem using and understanding
spatial language with each other or in taking one another’s
point of view. The mixed orientations of weightless envi-
ronments, though, may well add an additional challenge for
spatial perspective-taking in robots and for their interactive
comprehension of astronauts’ spatial language. However,
virtually all of the experimental work on spatial language
and perspective-taking to-date has focused on five frames
of reference: exocentric (world-based, such as “Go north”),
egocentric (self-based, “Turn to my left”), addressee-centered
(other-based, “Turn to your left”), deictic (“Go here [points]”),
and object-centric (object-based, “The fork is to the left of the
plate”) [20]–[26]. Thus, in our analysis, we used this framework
to explore the type and amount of spatial perspective-taking
that arose among the astronauts in training.

II. HUMAN–HUMAN INTERACTION STUDY

A. Method

We analyzed a series of video tapes of astronauts training in
the NBL for Space Station Mission 9A. Astronaut utterances
were collected as they performed a cooperative assembly task,
specifically the construction of the first right-side Truss seg-
ment and the Crew and Equipment Translation Aid (CETA) Cart
A. Throughout the training, three individuals were primarily
involved in conversations and working together: Ground (the
person in charge, issuing instructions to accomplish) and EV1
and EV2 (the two astronauts performing the task). Ground could
see what was happening from multiple perspectives through var-
ious cameras. All three individuals could communicate through
microphones. The training session lasted over 6 h. The unit of
analysis was the Instruction (e.g., “Go forward”) and instruc-
tion follow-ups (e.g., “OK, going forward”). Off-task utterances
(jokes, etc.) were coded as off-task. All on-task utterances were
coded using standard protocol analysis techniques [27]. A total
of 4000 on-task utterances were coded.

B. Results

Approximately half of the utterances (2113 out of 4000)
were instructions and instruction follow-ups. The other half
was confirmation (“OK”), general dialog, and so on. There
were far more instruction follow-ups than instructions (1590
versus 523 utterances), , . Interestingly,
the pattern of results for instructions and follow-ups was not
significantly different, so they were combined for the following
analyzes.

Table I shows the five different types of utterances and the
overall rate that they occurred in the corpus. In one very real
sense, each instruction could be categorized as “addressee-cen-
tered,” since every instruction (by definition) was a request for
someone else to perform a task. Similarly, each follow-up in-
struction could be categorized as egocentric, since the person
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TABLE I
ASTRONAUT UTTERANCE TYPES AND EXAMPLES AS THEY WORKED

ON A COLLABORATIVE ASSEMBLY TASK

was describing his or her own actions. However, each instruc-
tion was coded according to the kind of spatial language that
was used within the utterance.

As Table I suggests, the most common utterance was ob-
ject-centered, , , Bonferonni adjusted

. This result is not surprising, since the astronauts
were working mostly with objects. Previous researchers have
shown that when making an object-based utterance, the object’s
reference frame is based primarily on its function: the “top” of
a cup is where the liquid is poured into, regardless of the ori-
entation of the cup [21], [22]. In our analysis, the same finding
seems to be true: astronauts referred primarily to objects’ func-
tional relations.

Second, approximately a quarter of the utterances required
some perspective-taking; either the speaker needed to take the
point of view of the listener, or the listener needed to take the
point of view of the speaker.

Third, consistent with other research [10], people switch per-
spectives quite often, approximately once every other utterance.
When a speaker is talking without interruption, they switch per-
spectives 45% of the time. Similarly, when a new speaker enters
into a conversation, that utterance is also likely to be a different
from the original speaker’s perspective 44% (477 out of 1083
speaker transitions) of the time. The brief conversation fragment
shown in Table II accurately illustrates all three of these points.

Notice several things about this conversation. First, Ground
mixes reference frames: addressee-centered (“straight down
from where you are”), object-centered (“down under the rail”),
addressee-centered (“by your right hand”), and exocentric
(“straight nadir” which means toward the earth) all occur in
the first instruction that ground gives in this fragment. Second,
the participants come up with a new name for a unique unseen
object (“the mystery hand-rail”) and then tacitly agree to refer
to it with this nomenclature later in the dialog.

Other researchers have found at least as much evidence for
perspective-taking in psychological studies focused on language
and spatial settings. In one study, for instance, while describing
spatial environments, a range of 25% to 31% of participants’
utterances involved perspective-taking [28]; in another, while
writing descriptions of spatial environments, use of perspec-
tive-taking in participants’ sentences ranged from 28% to 31%
[29]. And in our laboratory, we found participants’ use of per-

TABLE II
DIALOG BETWEEN TWO ASTRONAUTS AND AN OBSERVER (NAMES

HAVE BEEN CHANGED TO PRESERVE CONFIDENTIALITY)

spective-taking in a virtual robot navigation task ranged from
3% to 72% depending on condition [25]. Findings such as these
indicate that perspective-taking plays a substantial role in how
people communicate about physical spaces and tasks, and sup-
port the focus of the work presented in the remainder of this
article. In particular, spatial perspective-taking abilities should
be a high priority of human–robot interaction research; it is im-
portant for good human–robot interaction when collaborating
in shared space, and without it, we believe that autonomous
robots will be poor collaborators, at best, in many human–robot
activities.

III. SIMULATING PERSPECTIVES USING COGNITIVELY

PLAUSIBLE MECHANISMS

As we stated in our introduction, we work from the premise
that human–robot interaction is best modeled on human–human
interaction principles. This view has led us to a general approach
for building human–robot interaction tools that embraces three,
interrelated conceptual guidelines.

1) Robotic representation, reasoning and perception mecha-
nisms should be as similar to those of humans as possible.

2) Cognitive systems for human–robot interaction should be
based on integrated cognitive architectures.

3) The use of heuristics and principles in collaborative ac-
tivities similar to those ordinarily employed by people is
consistent with people’s expectations, and so, is consis-
tent with effective human–robot interaction design.

In addition, a corollary guideline for our perspective-taking
work can be stated as follows:

To perform collaborative tasks with humans in physical
settings, a robot must be able to simulate and reason about
the world from the perspective or vantage point of others.
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We believe that these are merely guidelines for building good
human–robot interaction. A more in-depth description of some
of these guidelines can be found in [30]. Before we turn to a
description of our current implementation and the status of our
perspective-taking work, we first discuss some of the bases for
our guidelines.

A. Similar Representations and Processes

When computational systems are designed to reason about
collaborative interactions with representations and processes
that are functionally similar to those used by people, the goal
of intuitive interaction design is arguably facilitated. A clear
example of this comes from spatial reasoning, where in general,
people seem to use a combination of spatial and propositional
knowledge [9], [31]–[36]. As a matter of practice, though,
robotic approaches to spatial reasoning must take into account
such factors as the variety and limitations of sensor data, the
functional structure of this data, its use in path planning algo-
rithms, and so on, little of which is represented internally in
ways that are intuitively meaningful to humans. Thus, while it
is a straightforward matter to design an interface that requires
the input of numerical coordinates for route specification, it is
nontrivial to design an interface that allows a user to specify a
route with a hand-drawn map. Current work by Skubic and her
colleagues [37], [38] is addressing this very issue. Aspects of
the problem include the extraction of qualitative information
and its translation into a functionally correct route while coping
with incomplete map information and various distortions of
scale. The goal of this work is to facilitate the design of a system
that is able to represent and reason about space in a way that
is functionally similar to how people think about it. While it is
hardly possible for robots to use human-like mechanisms for all
cognition, to the extent that this is possible, it will make robot
simulations of human perspective more intuitive for purposes
of collaboration and interaction [30].

B. Integrated Cognition

Human cognition is clearly integrated—researchers may
disagree over how and where the integration occurs [39]–[41],
but virtually all cognitive scientists agree that cognition is
integrated. Likewise, we believe that the cognitive aspects of
robotics systems—especially thinking and reasoning—should
be integrated as well. Another, more speculative benefit is
that since humans are such good general-purpose intelligent
systems that have many effective mechanisms for interacting
with other humans, choosing human-like mechanisms is a
design heuristic for bringing robots closer to this ideal [30].

C. Cognitively Plausible Simulations for Perspective-Taking

A robot’s ability to predict or resolve ambiguities in the
behavior of a person by simulating the world from the person’s
perspective should greatly facilitate interactions with that
person. When a robot simulates the behavior of a person
engaged in a task, it can predict and therefore assist with the
next action, e.g., by fetching a needed tool or by offering infor-
mation that might make it possible to execute the action more
effectively. A robot can also simulate a person’s perspective

to disambiguate speech or gestures, such as the earlier wrench
example shown in Fig. 1. For these reasons, we have decided
to design an architecture for human–robot interaction based on
simulations of the perspective of another person (see also [42]).

An important virtue of a simulation-based architecture
for human–robot interaction is that it enables a considerable
amount of computational parsimony by reusing subsystems,
both for reasoning about the world and reasoning about other
people’s perspectives. Many inference algorithms can be con-
sidered strategies for running mental simulations [43], [44].
For example, in backtracking search, a series of counterfactual
states are represented and evaluated (or “simulated”) until a
solution is found. Stochastic simulation algorithms repeatedly
conduct simulations of possible worlds to determine the likeli-
hood of propositions being true in those worlds. Thus, because
mechanisms for simulating counterfactual worlds are used
widely in intelligent systems, we have attempted to use these
mechanisms to simulate perspectives saving the expense of
adding new reasoning mechanisms only for human–robot inter-
action. Cognitive scientists have also found strong evidence of
mental simulation for counterfactual reasoning [45], [46].

Finally, as was alluded to earlier in our discussion of repre-
sentations and processes, simulating the perspective of a person
requires robots to use multiple data structures and algorithms
since different aspects of a person’s perspective on the world are
best represented using different techniques. We therefore chose
to base our work on a cognitive architecture called Polyscheme
[43], [44], which was designed to model how humans integrate
multiple representational methods to keep track of the world.
Polyscheme, to be described in the next section, also has the
benefits of having rich facilities for representing counterfac-
tual worlds and thus can naturally implement simulations of
people’s perspectives.

IV. DETAILS OF IMPLEMENTATION

This section provides an architectural overview of our ap-
proach to improving human–robot interaction by enabling
robots to simulate the world from the perspective of humans.
We first describe the Polyscheme cognitive architecture that
this work is based on, and then describe how we apply it to
robot perspective-taking. We have developed this framework in
order to be as general as possible and therefore do not present it
in this section in the context of a specific task or domain. Sub-
sequent sections describe the details of actual implementations
and results in specific tasks.

A. Polyscheme

Polyscheme is a cognitive architecture that has been designed
both to model how humans integrate multiple representations
and inference techniques and to produce intelligent systems by
combining the benefits of multiple representations, planning,
and reasoning methods. Polyscheme has also been integrated
onto a robotic architecture to provide symbolic reasoning and
planning algorithms while maintaining the flexibility and ro-
bustness of reactive control systems [43].

Polyscheme is implemented in Java and runs on most com-
puting systems.
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B. Representing the Current State of the World

We first describe the mechanisms Polyscheme uses to rep-
resent the current state of the world and then describe how
these mechanisms are used to simulate counterfactual worlds,
including those that correspond to the perspective of people.

Since different aspects of the world are best represented by
different data structures, Polyscheme programs are constructed
from modules, called specialists, which represent these aspects
using their own specialized data structures. For example, a tem-
poral constraint specialist could keep track of constraints among
temporal intervals using Allen’s temporal constraint propaga-
tion algorithm [47], while an object location specialist could
keep track of object locations using an evidence grid.

Since the responsibilities of specialists will overlap (e.g., a
temporal constraint specialist and a qualitative physics specialist
can both make inferences about the temporal relation between
two events), and because one specialist can use information
from another (e.g., a qualitative physics specialist can use in-
formation from a specialist that remembers object locations),
Polyscheme has a mechanism for specialists to communicate
with each other called the focus of attention. At every time step,
all specialists “focus” on the same aspect of the world, which is
represented as a literal proposition. For example, when the focus
of attention is Color red , all specialists focus on the color
of the object . When specialists focus on a proposition, they
all indicate the truth value their inter-representation has for that
proposition and submit to Polyscheme’s focus manager propo-
sitions on which they would like to focus, either because they
follow from the current focus of attention or because they would
help determine its truth value. How the focus manager chooses
the next focus of attention will be described below.

Polyscheme’s representation of the current state of the world
therefore is the combination of each specialist’s representation
of the world. Focus of attention determines to which aspect of
the world the specialists will devote their representational and
inferential abilities. By including modules based on different
representations, Polyscheme resembles many multiagent sys-
tems. Its distinguishing characteristics involve how the com-
putations of these specialists are coordinated (the focus of at-
tention), its ability to represent counterfactual worlds, and its
ability to implement reasoning algorithms, not by encapsulating
them inside a specialists, but through strategies (focus schemes)
for guiding the specialists’ attention. These last two mechanisms
will be discussed in the next two sections.

C. Representing Alternative States of the World

Representing alternative states of the world is a common
theme among many otherwise disparate approaches to reasoning
and planning. The underpinnings to many reasoning and plan-
ning algorithms are search through a state space. Stochastic
simulation algorithms for propagating probabilities in Bayesian
Networks sample from and simulate possible states of the world.
Logics with possible worlds semantics have been used to for-
malize notions of information, belief, knowledge, and causality.
Such formalisms have also been used to formalize aspects of
linguistic semantics. The ability to represent alternative states of
the world is thus key to Polyscheme’s ability to integrate multiple

representations and algorithms. In particular, all specialists in
Polyscheme are required to be able to focus on and represent
alternate states of the world. This is also reflected in the language
for expressing propositions that constitute the focus of attention.
Every proposition in Polyscheme has a “world” argument. For
example, the propositions Color red states that is red in
alternate world . The “real world”—the state of the world that
is actual—is abbreviated .

An important feature of worlds in Polsycheme is the inher-
itance relationships among them. When world is the hypo-
thetical world where is true, we say that is based on . For
example, the hypothetical world where is green is based on
Color green . If is true in the real world and there is no
reason to infer it is false in , then specialists are to assume that

is true in as well. Thus, in the hypothetical world where
is green, Boston is still taken to be in Massachusetts unless oth-
erwise assumed or inferred. This relationship between worlds
is used in our perspective-taking work to efficiently represent
the perspective of people without having to explicitly represent
every aspect of it.

D. Choosing Simulations

Since each proposition has a world argument in it, the choice
of which proposition to make the focus of attention determines
which alternate world Polyscheme will consider. The focus of
attention is chosen at each time step, when specialists submit
propositions to the focus manager to which they would like to
attend, and the focus manager chooses one of these proposi-
tions as the next focus of attention. How the focus manager
chooses a proposition depends on various factors—including
activations associated with each proposition by specialists—that
are beyond the scope of this article and are explained elsewhere
[43]. What is important for this discussion is that the manner
in which specialists suggest propositions for attention, and how
the focus manager chooses them, amounts to a strategy, called
a focus scheme, for guiding the attention of the specialists in
Polyscheme. Focus schemes are described here by natural lan-
guage approximations.

Two focus schemes, one for probabilistic inference and an-
other for search, will illustrate how Polyscheme uses simula-
tions to integrate multiple, disparate inference algorithms. The
stochastic simulation focus scheme implements probabilistic in-
ference in Polyscheme:

When the specialists think is times more likely
than , focus on the world where is true times and
the world where is false times, where N is some
integer.
Repeated application of the counterfactual simulation focus

scheme implements search:
When the specialists are uncertain about , focus on the

world where is true and the world where is false.
In this way, reasoning algorithms from different subfields of
artificial intelligence are integrated in one system using the
simulation of counterfactual worlds. Because each step of each
simulation is conducted using all the specialists, which can
include statistical and perceptual representations and processes,
Polyscheme provides continual symbolic, statistical, and per-
ceptual integration.
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V. USING SIMULATIONS OF PERSPECTIVE FOR

HUMAN–ROBOT INTERACTION

As discussed earlier, our approach has been to enable robots
to simulate the world from the perspective of people so that they
can interact with them more effectively. Two particular focus
schemes, one for communication and one for cooperation in a
task, illustrate this approach.

The first focus scheme, called command simulation, causes
the robot to simulate the world from a person’s perspective in
order to disambiguate the person’s commands:

When a person, , gives a command, simulate giving
the command from ’s perspective.

The effect of this focus scheme is that (elements of) commands
given by that are literally ambiguous will become clear. For
instance, in the example shown in Fig. 1 where the robot knows
about two wrenches and the astronaut knows about only one,
a command simulation focus scheme can disambiguate the
utterance.

The second focus scheme, called action simulation, causes
robots to predict the actions of humans so that they can better
understand their commands or help the person without being
instructed:

When a person is engaged in a task, simulate ’s ac-
tions (forward into the future) from ’s perspective.

After simulating ’s actions into the future (i.e., predicting what
will do), a robot can take steps to assist in those actions or

more clearly understand commands involving those actions. For
example, if a particular kind of wrench is required for the next
step in the task, the robot can fetch that wrench, tell the person
where it is, or understand which wrench the person intends when
he commands, “Give me the wrench.”

This approach has two benefits. First, because simulating the
perspective of another person allows robots to disambiguate
human commands and offer assistance without prompting for
additional utterances, the amount of communication between
the human and the robot is greatly reduced, while the quality
of the communication is greatly increased. This enables hu-
mans and robots to cooperate more efficiently in more sophisti-
cated tasks. Second, because the simulations that constitute the
robot’s reasoning are continually integrated with multiple repre-
sentations, including those arising from new sensor information,
all this interaction can occur with the flexibility and robustness
that is required of robot applications.

VI. IMPLEMENTATION

Thus far, we have implemented this architecture on a robotic
platform named Coyote, to allow it to more effectively collab-
orate with people. Details of the full system can be found else-
where [30], [48]–[53], but a high-level description of the system
will be provided here.

The robot is a commercial Nomadic Technologies Nomad200
suited to operation in office environments. It has a zero turn ra-
dius drive system, an array of range, image, and tactile sensors,
and an onboard network of Linux and Windows computers with
a wireless Ethernet link to the external computer network.

In addition to general mobility enabled by sonar and LADAR,
the robot recognizes particular objects in its environment by

using the CMVision package [54]. This vision system was used
to provide simple color blob detection using an inexpensive dig-
ital camera mounted on the robot. In our scenarios, the robot
only needed to be able to recognize orange traffic cones and
boxes, which were used to create occlusions.

The human user could interact with the mobile robot using
natural language and gestures that are part of our multimodal
interface [48]–[51], [55]. The natural language component of
the interface uses a commercial speech recognition engine,
ViaVoice, to analyze spoken utterances. The speech signal
is translated to a text string that is further analyzed by our
in-house natural language understanding system, Nautilus [56],
to produce a regularized expression. This latter representation
is linked, where necessary, to gesture information, and an
appropriate robot action or response results. Note that we use
ViaVoice purely for syntactic input.

Polyscheme interacted with the other robot processes through
TCP/IP sockets. After receiving an instruction, Polyscheme rea-
soned about what was needed and integrated perceptual infor-
mation from the CMVision package. Polyscheme instructed the
robot where to go, and the mobility system would then plan
a path to that location and perform collision avoidance to get
Coyote to within a small epsilon of that location.

In order to address the robot’s problem of integrating mul-
tiple representation and inference techniques to represent the
perspective of a person, several Polyscheme specialists for
various data structures and algorithms are used on Coyote. The
perception specialist uses color segmentation [54] and laser
range finding to identify and localize objects, and also receives
verbal input. The temporal perception specialist keeps track
of the order of events using Allen’s [47] temporal constraint
framework. The space specialist keeps track of the location of
objects. The perspective specialist computes the objects that
are visible to a person from the person’s current location. It
also infers that if a person knows where something is, it is
because he has seen it (this is an assumption we have built
into the task domain). The identity hypothesis specialist, whose
role is described below, uses a neural network to guess which
object perceived in the past corresponds to an object perceived
at present. The identity constraint system propagates iden-
tities [e.g., it infers that if Same and Same , then
Same ]. The spatial relationship specialist has the ability
to reason about all types of spatial relationships encountered in
the data collected during the NASA astronaut exercise.

Finally, Coyote has several focus schemes for reasoning in
addition to the two perspective-taking focus schemes discussed
in the previous section. One of these, the counterfactual simu-
lation focus scheme, which was described earlier, will be useful
in the example below.

VII. SIMPLIFYING HRI

In order for our system to simplify human–robot interaction,
it must work in a variety of spatial situations and with a va-
riety of frames of reference, as our astronaut data suggest. To
fully explore the combined system, we created a number of sit-
uations where perspective-taking is needed to varying degrees.
In all these scenarios, Coyote and the person are together in a
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Fig. 2. Scenario diagrams. Triangles are the cones and the rectangles are the
occluding boxes. Human (H), on top of each diagram, and robot (R), on the
bottom of each diagram, are facing each other. (a) Scenarios 1; (b) 2; (c) 3; and
(d) 4.

TABLE III
DIFFERENT SCENARIOS WE GAVE TO COYOTE

TO EXAMINE PERSPECTIVE-TAKING

room with several objects and possible occlusions from either
the robot’s or human’s perspective. The most relevant objects
will be two orange traffic cones and a set of boxes. Fig. 2 and
Table III describe the different scenarios we examined. In all
cases, the human gives the robot the instruction “Coyote, go to
the cone.”

In all cases, perspective-taking is available to the system
(it is the same integrated system throughout). However, in
some cases, perspective-taking is a critical component of the
reasoning process (scenarios 2 and 3, where there is a hidden
cone), while in others it is either not needed (scenario 1, single
visible cone) or does not help with the disambiguation process
(scenario 4, two cones, visible to both).

Scenario 1, single visible cone, presents the simplest case:
The person and Coyote can both see the same cone. When given
the instruction “Coyote, go to the cone,” Coyote confirms that
the human indeed can see Cone A and then it simply navigates
to the cone.

In scenario 2 (two cones, one hidden from human’s sight,
illustrated in Fig. 3), Coyote is initially situated so that it sees
the two traffic cones, while the person can only see one, since

Fig. 3. Scenario in which Coyote (in the foreground at the bottom of the
picture) can see two orange traffic cones while human can only see one.

TABLE IV
POLYSCHEME PROPOSITIONS AND THEIR MEANING FOR REPRESENTING

THE COMMAND “GO TO THE CONE.” THE SPEAKERS’ OWN WORLD

MODEL IS REPRESENTED BY wSpeaker

the other is occluded by the boxes. In order to perform the task,
Coyote must decide which cone the person referred to.

It will help in describing the sequence of Coyote’s rea-
soning to explain how natural language utterances corre-
spond to propositions about what Coyote sees. In this task,
the two cones Coyote sees are and . Coyote knows
Category Cone and Category Cone . “Go
to the cone” is represented with the propositions in Table IV.

Coyote’s task is to decide whether
Same or Same
is true. In other words, Coyote’s task is to decide whether the
object ( ) to which the speaker refers is identical to cone 1

or to cone 2 . Thus, the problem of resolving the
phrase’s reference is represented as an identity problem. To
resolve a reference, therefore, is to find which perceived object
is identical to the referred object.

Table V shows an outline of the sequence of inferences
Coyote makes in order to resolve the following ambiguity.

In scenario 3, the robot cannot see the cone because it is being
occluded by the box from the robot’s position. The robot must
now infer that the cone is in a location that the person can see but
the robot cannot. The system uses perspective-taking to choose
a location hidden to the robot, but visible to the human, and
promptly navigates there. Once Coyote gets to the new location,
it repeats the process to find the cone.

Scenario 4 presents the robot with an extremely ambiguous
case: There are two cones in the environment which both human
and robot can see. When asked to go to the cone, the robot can
neither navigate directly to the cone nor determine which cone



TRAFTON et al.: ENABLING EFFECTIVE HUMAN–ROBOT INTERACTION USING PERSPECTIVE-TAKING IN ROBOTS 467

TABLE V
OUTLINE OF POLYSCHEME’S REASONING IN ORDER TO SOLVE SCENARIO 2

(TWO CONES, ONE HIDDEN FROM HUMAN’S SIGHT)

to go to based on the person’s perspective. Therefore, it must
ask for assistance (e.g., “Which cone?”). In reply, the person

TABLE VI
POLYSCHEME PROPOSITIONS REQUIRED TO RESOLVE SPATIAL RELATIONSHIPS

will use one of several frames of reference similar to those used
by the astronauts: egocentrically (e.g., “the cone to my right”),
addressee-centered (e.g., “the cone to your right”), object-cen-
tered (e.g., “the cone in front of the box”), or exocentrically
(e.g., “the northern most cone”). When such clarification is
given, an additional proposition is provided to Polyscheme
as shown in Table VI. Previous research has shown how we
deal with the fifth deictic case (e.g., “The cone over [there]
(points)”) [48]–[51], so we will not discuss it further here.

The spatial relationship specialist considers the specified re-
lationship with respect to all possible reference objects, i.e.,
Cones A and B. Based on the location of all objects in the en-
vironment and the location of the point of view specified in the
relationship, the specialist is able to determine the truth value of
each relationship. Given this extra information, Polyscheme is
able to come to the correct conclusion.

Why doesn’t the model ask for assistance in all situations?
Many systems, when they recognize ambiguity and uncertainty,
resolve the ambiguity by asking for additional information.
However, this explicit request for additional information may
be considered extraneous by the human and may reduce the
effectiveness of the interaction. In addition, that request for
additional information is dissimilar to how humans usually
resolve this type of ambiguity. Previous work shows that given
the principles of least effort and joint salience [57], the human
would not ask for clarification in these cases. Given our em-
phasis on compatibility with humans, our system only asks for
additional information when the situation is truly ambiguous
(e.g., scenario 4, when there are two cones visible to both the
human and the robot).

Note that there are many different ways to resolve ambiguity.
For example, if an astronaut always used a specific wrench for a
specific task, and the robot knew that the astronaut was working
on that specific task, the robot could always hand the astronaut
the correct wrench, regardless of whether the person could see
the wrench or not. This type of procedural knowledge is not
currently built into the system; here, we only concentrate on the
use of visual perspective-taking and frame of reference. In the
future, we will consider other methods by which humans resolve
ambiguities.
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TABLE VII
AMBIGUITY OF DIFFERENT SCENARIOS AS WELL AS THE

SUCCESS RATE OVER FIVE TRIALS EACH

An online video of scenario 2 (two cones, one hidden from
human) can be found at http://www.aic.nrl.navy.mil/~trafton/
movies/perspective-2objects-mp4.mov and an online video
of scenario 3 (single cone, visible only to human) can be
found at http://www.aic.nrl.navy.mil/~trafton/movies/perspec-
tive-hidden object-mp4.mov.

VIII. SYSTEM PERFORMANCE

How well does the system perform, and how does the rea-
soning system do when ambiguity and uncertainty increase? To
explore this issue, we coded each scenario as having no ambi-
guity (scenario 1), a medium amount of ambiguity (scenarios 2
and 3), or a high amount of ambiguity (scenario 4). We com-
puted ambiguity ratios by taking the simplest, least ambiguous
case (scenario 1) and examining how much more time it took
as complexity increased. As Table VII shows, there is an in-
crease in Polyscheme’s runtime as ambiguity and uncertainty
increases.

This increase in computational time did not, however, affect
the overall success rate. In our analysis of the system, we ran
the full system through each of the four scenarios five times
each. Of the 20 runs we performed during testing, there were no
erroneous situations. Additionally, even though time increased
as ambiguity and uncertainty increased, the overall system per-
formance stayed manageable: reasoning time was never more
than 36% of the overall system performance. Across all four
scenarios and all 20 runs, we examined the amount of time
to perform perception (e.g., finding cones and the box), rea-
soning (e.g., using perspective-taking to determine which cone
the person is talking about), and navigation (e.g., moving to
the cone). The perception component accounted for 34% of the
overall system time, reasoning accounted for 26% of the overall
system time, and navigation accounted for 40% of the overall
system time.

In summary, when uncertainty and ambiguity increase, com-
puting time also increases to resolve that ambiguity. However,
the increase in ambiguity did not affect success rate over 20
trials, nor did it make the overall system excessively slow, even
in the most ambiguous case.

Even though our system did not make any errors, there
are several possible types of errors that could occur. First,
the performance of our perception system is dependent on
proper calibration of the color blob tracking. If the light
conditions change, the system might experience decreased
performance, both due to false positives (mislabeling objects,
detecting additional objects, etc.) and false negatives (missing
objects). A false representation of the environment could render
Polyscheme incapable of reaching a correct decision. A false
environmental representation would also interfere with more
traditional robotic problems such as obstacle avoidance, path
planning, or localization.

We believe that our system can scale up well, as evidenced by
the different types of scenarios and the robustness with which it
performed. Our system has not been tested with a large number
(e.g., hundreds) of objects, however. Many objects would prob-
ably cause the system to slow down, so more optimal algorithms
may be needed. In other words, in order to scale up 100 orders
of magnitude, our current AI algorithms would probably need to
be optimized. There are, of course, other methods of modeling
perspective-taking (e.g., [42]), which may have different com-
putational properties. However, we believe that the core ideas as
well as many of the algorithms will be robust.

IX. CONCLUSION

This paper makes several contributions to human–robot
interaction. First, the importance of perspective-taking in
human–human interaction was shown in a nontrivial, real-world
domain where it is expected that robots will soon be part of the
team.

Second, we have outlined three important conceptual guide-
lines and a corollary for building robotic systems that in-
teract with people. The first is to make the cognitive systems
of robots similar to those of humans when it will aid in
human–robot interaction. We have supported this guideline
by focusing on cognitively plausible simulations for perspec-
tive-taking for robots. The second of these guidelines is to
build cognitive robotic systems that are integrated across per-
ception, cognition, and action. In fact, almost every current
cognitive architecture [16], [17], [33], [44], [58] is integrated
across a number of levels (though where that integration oc-
curs is, of course, subject to some debate). Our third guideline
is that building models of human–robot interaction based on
human–human interaction will result in good design heuris-
tics throughout the project. So far, this principle is still a
hypothesis; not enough evidence has been gathered or systems
built to adequately evaluate how veridical it is. Our corollary
guideline focuses on perspective-taking per se and suggests
that, since people use simulations to take others’ perspectives,
models of perspective-taking should as well. Our computa-
tional cognitive models do exactly that in theory as well as in
practice.

One of the most difficult aspects of human–robot interaction
has been to deal with the collaboration issue: when do you col-
laborate, when do you ask for help, and how do you respond to
assistance. Our system takes a large step for answering these
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questions. We collaborate when explicitly asked (“Go to the
cone, coyote”). However, we do not request new information
about every single decision that must be made: if our system
can determine how to help, it does (e.g., it does not ask for as-
sistance if it can resolve its uncertainty on its own). Finally, we
have shown that our system can respond to a variety of frames of
reference, including egocentric, exocentric, addressee-centered,
object-centered, and deictic.

We have also presented a full instantiation of these ideas
within a computational system (Polyscheme) and on a working
robotic system (Coyote). The system is robust and has been
demonstrated on a number of different tasks (additional demon-
strations are described in other work [43]). An extremely
important aspect of the overall system is that it makes increased
complexity of tasks possible between humans and robots
because every little detail does not need to be explained or
thought-through in advance. Finally, the amount of integration
in the full system is substantial. We have a working system
that integrates perception, language understanding, problem
solving, and spatial reasoning on an embodied robot. This work
is a large step toward making a robot a true collaborator.
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