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ABSTRACT 
 
Building systems that integrate different artificial intelligence 
techniques to achieve a higher level of total intelligence is very 
difficult. In order to build integrated systems, simplifying 
assumptions or abstractions are usually made when working in a 
specific domain. As a result of these assumptions and abstractions, 
the proper evaluation of integrated artificial intelligence techniques 
can be quite challenging. We suggest that the domain of hide and 
seek is a particularly well-suited task for integrating robotics and 
higher-level reasoning mechanisms such as computational cognitive 
modeling.  Three different instantiations of integrated systems in the 
“hide and seek” domain, which combine cognitive-level algorithms 
with lower level algorithms for perception and navigation are 
discussed. 
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1. INTRODUCTION 
 
How do we build intelligent systems, and evaluate the 
underlying algorithms?  There are, generally, two main ways 
of building intelligent systems.  The first possibility is to focus 
on a relatively small sub domain and build a system or set of 
algorithms that solve problems in that sub domain very well.  
Working in this manner generally leads to very efficient 
methods of solving a relatively narrow set of tasks.  There are 
many researchers (including some of the current authors [1]) 
who build these kinds of highly specific systems. The second 
possibility is to build complex systems that solve a larger class 
of problems but that may be less efficient at each task and 
perhaps at the whole task.  There are some researchers 
working on these kinds of problems (e.g. [10]), but building 
integrated systems is very difficult for a number of reasons. 

First, the individual techniques are developed using 
different assumptions about their use (e.g., the input/output 
relationship with the environment they are in).  Second, 
because most systems are designed for different domains, 
combining two techniques often involves modifying and 
adding new domain specific elements to the design.  Finally, 

because each research group’s assumptions and domain are so 
unique, each new group or project must reinvent machinery 
that is relatively incidental to their main interest.  For 
example, a researcher trying to develop probabilistic reasoning 
techniques to aid in robot navigation must spend considerable 
effort acquiring and configuring a robotics platform with the 
appropriate sensors and actuators to test possible new 
techniques. 

Each of the above integration issues makes it difficult to 
evaluate the effectiveness of any new technique or system.  It 
is almost impossible to compare two techniques when one 
assumes video input from the environment and the other 
assumes sonar; or when one is designed for an office 
navigation task and the other for air traffic control. 

Finally, the structural difficulties of integrating various 
techniques may encourage researchers to ignore or abstract 
away from difficult issues that hold back the field’s progress.  
For example, there is concern [5] that when people working 
on “high-level” artificial intelligence techniques abstract away 
from perception and mobility issues, or when people working 
on perceptual and mobility techniques ignore high-level 
inference, they are actually ignoring the true substance of 
intelligence which lies at the interface between the two.   

In Section 2, we present the task of hide and seek as a 
particularly well-suited task for integrating and evaluating 
artificial intelligence techniques.  Section 3 describes three 
different instantiations of integrated systems, which combine 
cognitive-level algorithms with lower level algorithms for 
perception and navigation, and which use the hide and seek 
domain. 
 
2. THE HIDE AND SEEK DOMAIN 
 
In order to address these evaluation and integration issues, we 
are organizing a substantial amount of our research around the 
“hide-and-seek” task domain.  This domain is forcing us to 
face the difficult integration problems between “high-level” 
cognitive architectures (for example, ACT-R [2] and 
Polyscheme [7]) and systems (such as SAMUEL [9]) for 
sensing and moving in a physical environment.  In this 
section, we describe how using a robotic platform in this 



domain allows us to study a surprisingly wide range of issues 
in intelligence, perception and mobility. 
 
2.1.  Perception and Mobility 
 
Agents that engage in hide-and-seek obviously cannot avoid 
the need to address a wide range of problems in perception 
and mobility.  To find their targets, for example, agents must 
be able to identify (object recognition) and move towards their 
targets (path planning) without damaging the environment 
(obstacle avoidance).  More generally, any information agents 
can gather perceptually will help them seek and navigate to 
their targets and the more efficiently they navigate to the 
target, the better they will be at hide-and-seek. 
 
 

 
 
 

Figure 1.  The robot that emerges from behind the screen can be 
the same robot that went behind the screen from the left because 
there was nothing behind the screen to block its motion.  The 
barrier did not go behind the screen until after the ball did. 
 
 

2.2. Temporal reasoning 
 
In order to succeed at hide-and-seek, agents must perceive and 
reason about events that occur during various temporal 
intervals.  The relations of those intervals among each other 
are important for predicting the outcomes of events and 
therefore the locations of objects that an agent might be 
seeking.   Figure 1 shows a simple example of this.  In the 
figure, a robot rolls behind an occluding screen and then a 
robot that looks the same rolls out.  Next, someone places a 

large barrier behind the screen.  Because the barrier was 
placed there after the robot-rolling event, you can assume that 
the space behind the screen was empty during the robot-
rolling event and that the robot that emerged from the screen 
is the same as the robot that moved behind the screen. 

Figure 2 presents the same scenario, except that the robot 
rolls behind the screen immediately after someone put the 
barrier behind the screen.  In this case the robot that emerged 
from the screen cannot be the same as the robot the rolled 
behind the screen because this it did not have time to go 
around the barrier and it could not go through the barrier. 
 
 

 
 
 

Figure 2.  One knows that the robot that rolls out to the right is 
different from the robot that rolls in from the left because the 
barrier behind the screen would keep the left robot from rolling 
out. 

 
In these very simple, illustrative cases and in more 

complex situations such as hide-and-seek, the  task requires 
agents to make many temporal inferences in order to keep 
track of seeker or target agents and objects. 

 
2.3. Logical deduction, falsification, default 
reasoning and explanation 
 
Researchers using logical approaches to artificial intelligence 
have encountered many difficult issues regarding deduction, 
falsification, default reasoning and explanation, and they have 
constructed many sophisticated logical theories to deal with 



them.  The following example shows that even the simplest 
physical interactions involve these issues. 

In Figure 3a, a ball rolls towards a screen.   In Figure 3b, 
it rolls behind the screen, but in 3c it fails to emerge from 
behind the screen and an object that blocked it is posited 
behind the screen.  One can crudely formalize the inference 
that the ball should come out of the screen thus: 
 
At(ball, left-of-screen, t1) ^  
Moving(ball, right, t1) ^   
Empty(behind-screen) 
  

At(ball, behind-screen, t2) ^   
Moving(ball, right, t2). 
 
At(ball, behind-screen, t2) ^   
Moving(ball, right, t2) ^   
Empty(behind-screen) 
   

At(ball, right-of-screen, t3) ^   
Moving( ball, right, t3 ). 
 
The inference that the ball emerges from the screen depends 
on the assumption that: 
 
Empty(behind-screen). 
  
When the ball fails to come out from the screen, you infer that 
the proposition,  
 
Empty(behind-screen),  
 
is not true and that there must be something behind the screen 
blocking the ball:  
 
At(something, behind-screen, t2) ^ 
something != ball. 
 

Many traditional issues from the formal logical study of 
intelligence arise here:  what can you assume and why; what 
does it take to falsify an assumption; when there is more than 
one explanation for an event; which do you chose; etc.  These 
are the usual issues surrounding explanation and default 
reasoning and they also occur whenever you try to build an 
effective hide-and-seek system. 

 
2.4. Belief revision and reason maintenance 
 
Any system that reasons in almost any nontrivial domain must 
often infer or assume facts that it must later revise.  Because 
the system could have inferred more facts based on the 
originally assumed fact, revising its belief about the original 
fact is much more complicated than simply retracting it [8].  
The system must retract all beliefs it inferred using the 
original fact that are not otherwise justified.  Building systems 
that can revise their beliefs correctly has been a challenge for 
artificial intelligence researchers, even for those trying to 
build good models of common sense physical interactions. 

 
 
 

 
 
 
 

Figure 3.  The ball rolls behind the screen (A), but does not roll 
out (B).  There must be an object behind the screen that blocked 
it (C). 

  
Consider an example.  Figure 4a shows a scene where a 

screen occludes a table.  A block is dropped above the table, it 
falls behind the screen and you infer that it comes to rest on 
the table.  Then, when you are told that there is not just one 
table, but that there are two separated tables, as in 4b, you 
must revise your belief about where the ball went when it fell 
behind the screen.  In this case, you assume it fell on the floor. 

In general, in order to ascertain the location of any object, 
an intelligent system must make inferences about the object’s 
location, which often depend on provisional information.  For 
a system playing hide and seek, if the system spends time 
waiting for or attempting to acquire more definite information, 
the target would have more time to get away.  Thus, any 
system that engages in the hide-and-seek task must be able to 
revise provisional beliefs and inferences that followed from it. 

 
2.5. Planning, searching, problem solving 
 
Events often have more than one possible outcome and 
systems can usually execute more than one action at any given 
time.  The sequence of possible actions and/or inferences 
about event outcomes creates a huge “problem space” of 



possible world states and an intelligent system must choose a 
sequence of actions and/or inferences to achieve an adequate 
state. 
 
 

 
 
 

 
Figure 4.  If, as appears in A, there is only one block behind 
the table, then you infer that it came to rest on the table.  When 
you learn instead that there are two tables with a gap between 
them, as in B, you infer that the block fell through the gap and 
rests on the floor. 

 
The need to search through problem spaces is most 

obvious in the hide-and-seek task when it involves robot 
mobility issues.  Many algorithms for planning complex paths 
involve creating a visibility or region graph of the space and 
then searching the graph using traditional artificial intelligence 
search techniques. 

Robots designed for the hide-and-seek task, however, 
need planning and search for much more than mobility alone.  
In the following example, we demonstrate that tracking the 
path of a simple ball can require searching through problem 
spaces that involve more than just the location of the ball.  
Figure 5 illustrates a simple physical interaction that requires 

backtracking search.  Behind the screen in Figure 4 are two 
buckets.  On the left, bucket A is filled with water and on the 
right, bucket B is full of hot coals.  Figure 4 also shows a ball 
falling behind the screen.  The ball is white and shaped 
roughly like a ping-pong ball, though it may be made of 
plastic or rubber.  You see the ball fall behind the screen, 
though you neither see nor hear any further sights or sounds 
because the ball is too light to have dislodged anything and the 
screen masks soft noises.  If your task is to figure out if the 
ball fell into bucket A or B, you might imagine that the bucket 
fell into bucket B and infer the consequences.  To infer the 
consequence of landing in bucket B, you need to know if the 
ball is rubber or if it is plastic.  You can imagine that it is 
rubber, infer that you would smell burning rubber, sense that 
you do not smell anything burning and therefore conclude that 
the ball is not rubber if it fell in B.  Likewise, you can infer 
that the ball is not plastic if it fell into B because when you 
imagine a rubber ball lying in burning coals, you imagine a 
certain smell that you do not perceive.  So if the ball fell 
behind B, it is neither rubber nor plastic.  But you know it was 
one of these, so you know that the ball did not fall into B, but 
instead fell into A. 

Similarly, the hide-and-seek task requires a broad array of 
search abilities. 

 
 

 
 
 
 

Figure 5.  Bucket A is filled with water and bucket B is filled 
with hot coals.  The ball falls into one of the two buckets. 

 
 
2.6. Probabilistic inference 
 
In many instances of hide-and-seek where events have more 
than one possible outcome, some are more likely than others.  
Seeking a target efficiently is often difficult when a scenario 
involves several possible series of outcomes, because the 
seeker must decide which of the many outcomes is most  



likely.  Attempts to make such decisions are often called 
“uncertain reasoning” or “probabilistic inference”. 

Imagine an example like the last one, with the only 
difference being that you know more about the probabilities of 
each uncertainty.  Bucket A takes twice the area of bucket B 
and the odds that the ball is plastic are 5:1.  You are certain 
that you did not hear a splash, but are uncertain whether you 
smell any new smells.  What are the odds that the ball is in A 
and what are the odds that it is in B?   

This example shows that in order to keep track of the 
most likely positions of targets, agents must engage in 
probabilistic inferences.  Similarly, hide and seek requires 
similar reasoning. 
 
2.7. Social reasoning, communication and human-
machine interaction 
 
When a seeker agent is attempting to find an autonomous 
intelligent agent, it must be able to reason about that agent's 
mental state.  Depending on the kind of target agent, this 
implies that competent behavior in the hide-and-seek task 
requires thought about emotions, beliefs, desires, personality 
traits, etc. 

When a team of seeker agents is searching for a target, 
then each team member must be able to communicate with 
other team members in order to coordinate their behavior and 
execute a coherent search strategy.  Depending on the 
communications abilities of the seeker agents, this could 
involve language use at all levels: speech recognition to 
decompose the acoustic signal from other agents into words, 
syntax and semantics to determine the meaning of the words 
and pragmatics to understand how the other agent(s) intend an 
utterance to fit into the larger joint seeking joint project. 

When the seeking team contains both humans and robots, 
then the hide-and-seek task becomes a medium for studying 
robot and machine interaction with humans. 
We believe that the full array of research issues in social 
reasoning, communications and human-machine interaction 
can be studied in the hide-and-seek domain. 
 
2.8. Putting it all together 
 
Our claim is that hide and seek is an excellent domain with 
which to study intelligence using integrated systems.  We have 
presented several needed behaviors that seeker and target 
agents must have.  We now go through a simple example of 
playing hide and seek to outline where each of these behaviors 
is needed.  Bolded phrases below correspond to the behaviors 
we have discussed earlier. 

Let us assume that we will play hide and seek with a 
robot.  The robot will be the seeker agent ("It") first and 
search for the target in a room full of boxes, tables, and desks.  
The target initiates the game with the robot by talking to it 
(communicating with it, using human robot interactions, 
probably language generation and language 

comprehension).  Next the robot counts to 10 and starts 
searching for the target agent.  The robot must move around 
the environment in the room while avoiding obstacles 
(perception and mobility).  The robot may also draw on its 
past experience playing hide and seek to determine that some 
places are better to hide behind and search those places first 
(probabilistic inference). 

If the robot searches behind a box first, it may then 
assume that the target agent will not be there later (unless it 
moved) (temporal reasoning).  If the robot then searches the 
entire room and does not find the target agent, it may reason 
that the target must have moved to a different (previously 
searched) hiding place while the robot was searching for it 
(logical deduction, falsification, default reasoning, and 
explanation).  The robot must then decide to search the room 
again and re-check positions that it had already searched 
(belief revision and reason maintenance).  The robot may 
decide that if the target agent can move around, it should 
search the room in such a way that allows it to see the 
maximum (or most likely) places the target agent would move 
to (planning, searching, problem solving). Once the robot 
finds the target agent, it must tell the target that it was found 
and perhaps even give it some feedback on how good the 
hiding behavior was (social reasoning, communication, and 
HRI). 
 
2.9. Hide and seek in the real world 
 
Many real world tasks are instantiations of the basic hide and 
seek domain.  In the military, there are missions that directly 
require these skills, including ISR (Intelligence, Surveillance 
and Reconnaissance), RSTA (Reconnaissance, Surveillance, 
and Target Acquisition), and special operations including 
concealment.  In non-military domains, hide and seek can be 
found in areas as diverse as Urban Search and Rescue, and 
inspection of facilities (e.g., searching nuclear containment 
facility and superfund sites). 
 
3. INTEGRATED SYSTEMS 
 
We now describe the three intelligent systems where high-
level algorithms in the form of computational cognitive 
models are integrated with low-level perception and mobility 
algorithms, and which use various hide and seek domains.  
Available results will be briefly described (and the reader 
directed to appropriate papers for complete results). 
 
3.1. A hybrid reactive/cognitive architecture for 
micro-air vehicles 
 
We have developed a hybrid cognitive-reactive system that 
combines more traditional reactive, stimulus-response (S-R) 
behaviors with cognitive models [4][12]. In this work, we 
merge a cognitive model and a reactive system into a control 
system for autonomous vehicles.  For this study, the system 



integrates SAMUEL, an evolutionary algorithm-based rule 
learning system [9] with ACT-R, a computational cognitive 
architecture [2].  In our hybrid system, the learning algorithm 
handles reactive aspects of the task and provides an adaptation 
mechanism, and the cognitive model handles the higher-level 
cognitive aspects such as planning and reasoning.  The 
cognitive model also provides cognitive realism of the 
behavior.  

Our hybrid controller was implemented for a 
simulated distributed micro air vehicle task.  In the 
MAV task, group of vehicles cooperate to perform 
reconnaissance and surveillance, a version of the 
“seeking” task. We assumed each vehicle could detect 
certain ground features below the vehicle and obstacles, 
including other MAVs, within a defined range to the 
dies of the MAV.  As a group, the MAVs needed to 
maximize the information gain about the ground 
features, concentrating on areas of more importance, 
and minimizing duplication of effort. In previous work, 
we successfully used genetic algorithms to evolve MAV 
control rule sets that could accomplish the above 
surveillance task [3][13]. 

The cognitive model implemented in ACT-R was 
based on the data collected during human-subject 
experiments performed at NRL and described in greater 
detail in [12].  In those experiments, the human 
operators would control the MAVs by directing them to 
goal locations using a point-and-click interface to the 
simulator.  In this study, ACT-R, just like a human 
operator, was responsible for providing 2D goals to 
individual MAVs based on the current perception of the 
world.  ACT-R’s perception of the environment was 
closely matched to the perception of the human 
operator.  ACT-R could “see” the position and state of 
all MAVs, and the position and value of discovered 
regions of interest. 

SAMUEL was used to evolve stimulus-response 
rules to perform the collision-free reactive navigation 
behavior for the simulated MAVs.  Each MAV used the 
same behavior evolved by SAMUEL in conjunction with 
the goals provided by ACT-R to safely navigate to a 
specified location.  The current MAV sensor information 
is mapped to the conditions of the stimulus-response 
rules.  The action of the rule that is activated specifies 
the action of the vehicle. 

We found the performance of the hybrid controller to be 
comparable to the performance of the human controller, while 
allowing more vehicles to be controlled with fewer collisions. 
The model seems to capture some of the human's behavior and 
performance, while it also allows for higher levels of 
reactivity, which the humans were not able to handle. This 
suggests that our hybrid system is adequately modeling the 

humans' high-level cognitive functions, and also the difficult 
low-level reactive aspects. 

 
3.2. Polyscheme 
 
In order to study how to integrate multiple, seemingly 
incompatible, inferential and representational techniques, we 
used the Polyscheme cognitive architecture to develop the S6 
system [7] that reasons about simple physical events that it 
perceives.  This was especially helpful in understanding how 
high-level inference and planning techniques might combine 
with and help perceptual algorithms.   

S6 views interactions in a simple physical world through 
a 2-dimensional projection of that world.  S6 keeps track of 
the identity of objects, infers the character and existence of 
events it cannot see, predicts the outcome of events, explains 
events and nonevents and revises its inferences when it 
receives new information.  S6 successfully reasons about 
many scenarios researchers present to infants and young 
children in order to study their knowledge of the physical 
world.   

S6 combines specialized representation and inference 
techniques for identity, time, events, causality, space and paths 
to successfully deal with a wide range of situations.  The 
knowledge representation schemes S6 uses include scripts, 
frames, logical propositions, neural networks and constraint 
graphs.  The inference schemes S6 implements include script 
matching, rule matching, backtracking search, neural network 
propagation and counterfactual reasoning. 
 
3.3. A learning cognitive model for playing the 
game of hide and seek 
 
In our efforts to add cognitive models for higher level 
reasoning to traditional mobile robotics control, and to 
demonstrate the idea that more effective human-robot 
interactions are possible by using these computational 
cognitive models, we are modeling hide and seek behaviors in 
people, and using these to control a robot.   

We have built a simple computational cognitive model of 
hide and seek.  The model is based on a case study of a 3.5 
year old learning to play hide and seek, specifically the 
learning that occurs as the child learns good and poor places to 
hide.  The computational cognitive model is built within the 
ACT-R framework [2] and models the reasoning the child 
goes through as she plays and tries different hiding places.  
This is a very difficult task because there is very little 
feedback, very few trials, and very few suggestions.   

The child went from hiding in a room with her eyes shut 
("if I can't see you, you can't see me" strategy) to hiding under 
an upholstered chair in a different room.  The model currently 
captures aspects of the child's learning by building a schematic 
representation of hiding and learning that some places are 
good to use as hiding places (e.g., under is good if the object is 
opaque; hiding under a piano is bad).  The model also uses a 



simple ontology to reason about hiding given few suggestions 
("Do not hide out in the open") and limited feedback ("You 
hid in a good place").  We are currently in the process of 
putting this computational cognitive model on a robot to play 
a simple game of hide and seek. 

On the robot, perception is handled with a simplified 
perception model.  Each object in the room is “labeled” with a 
color target whose color indicates the class of the object (e.g. 
desk or chair), and whose size indicates the approximate size 
of the object (so that the model can determine if it is big 
enough to hide behind. A color camera and a color blob 
detection algorithm [6] are used to find suitable objects to hide 
behind. 

Low-level mobility of the robot is handled by a system 
that combines reactive navigation and collision avoidance, 
explicit path planning, map learning, and localization.  This 
system is described in detail in [11]. 
 
4. GENERAL COMMENTS, FUTURE WORK 
 
The proper evaluation of integrated artificial intelligence 
techniques can be quite challenging. In this paper, we 
presented the domain of hide and seek as a particularly well-
suited task domain for evaluating the integration of low-level, 
reactive algorithms with higher-level reasoning mechanisms.  
Three different instantiations of integrated systems that 
combine cognitive-level algorithms with lower level 
algorithms for perception and navigation, were described.  

We continue to push the integration of computational 
cognitive models into our systems. We believe that 
incorporating cognitively plausible behavior will permit more 
natural interactions between humans and robots.  Using 
computational cognitive architectures and cognitive models 
can ease the ways in which robots communicate with their 
human team members, and vice versa.  We have been 
exploring the addition of cognitive models for two goals.  
First, allowing the robot to use the same representations and 
qualitative reasoning as the human will allow for more 
effective and efficient communication.  Second, endowing the 
robot with behaviors based on cognitive models of human 
performance allows the robot to exhibit behaviors that are 
similar to how a human might perform a task, thereby 
enhancing social human-robot interaction.  Not only does this 
improve interactions with the robot’s human team members, 
but is also critical for robots that need to interact with 
bystanders. We will test these arguments in future research. 
 
5. REFERENCES 
 
[1] Altmann, E. M. and J.G. Trafton (2002).  Memory for 
goals: An activation-based model.  Cognitive Science, 26, 39-
83. 
 
[2] Anderson, J. R. and C. Lebiere (1998).  The Atomic 
Components of Thought.  Mahwah, NJ:  Lawrence Erlbaum. 

 
[3] Bugajska, M. D, A. C. Schultz, J. G. Gregory, S. Gittens, 
and F. Mintz (2001).  "Building Adaptive Computer 
Generated Forces: The Effect of Increasing Task Reactivity on 
Human and Machine Control Abilities."  In Late-Breaking 
Papers Proceedings of GECCO-2001, San Francisco, CA. 

[4] Bugajska, M. D., A. C. Schultz, J. G. Trafton, M. Taylor, 
and F. Mintz (2002).  "A Hybrid Cognitive-Reactive Multi-
Agent Controller."  In Proceedings of 2002 IEEE/RSJ 
International Conference on Intelligent Robots and Systems 
(IROS), EPFL, Switzerland; September 30 – October 4, 2002. 
 
[5] Brooks, R. “Intelligence without representation”. 
Artificial Intelligence, 47:139--159, 1991. 
 
[6] Bruce, J., T. Balch, and M. Veloso (2000).  “Fast and 
Inexpensive Color Image Segmentation for Interactive 
Robots.”  In Proceedings of 2000 IEEE/RSJ International 
Conference on Intelligent Robots and Systems (IROS), Japan; 
October 2000. 
 
[7] Cassimatis, N. L. (2002), Polyscheme: A Cognitive 
Architecture for Integrating Multiple Representation and 
Inference Schemes.  Ph.D. Dissertation, MIT Media Arts and 
Sciences Section. 
 
[8] Doyle, J. 1979.  A truth maintenance system. Artificial 
Intelligence, 12:231-272. 
 
[9] Grefenstette, J., C. L. Ramsey and A. C. Schultz (1990).  
"Learning sequential decision rules using simulation models 
and competition," Machine Learning, 5(4), 355-381, October 
1990, Kluwer. 
 
[10] Lenser, S., J. Bruce, and M. Veloso. In A. Birk, S. 
Coradeschi, and S. Tadokoro, editors, RoboCup-2001: The 
Fifth RoboCup Competitions and Conferences. Springer 
Verlag, Berlin, 2002. 
 
[11] Schultz, A., W. Adams, and B. Yamauchi (1999).  
"Integrating Exploration, Localization, Navigation and 
Planning With a Common Representation,'' Autonomous 
Robots, v6 n3, May 1999; IEEE Press, pp. 293-308.   
 
[12] Trafton, J. Gregory, Alan C. Schultz, Magdalena D. 
Bugajska, Shaun Gittens, and Farilee Mintz (2001). "An 
Investigation of How Humans and Machines Deal with 
Increases in Reactivity." Proceedings of Tenth Conference on 
Computer Generated Forces and Behavioral Representation 
(CGF&BR), Norfolk, VA; May 15-17, 2001.  
 
[13] Wu, A. S. and A. Agah (1999).  “Evolving Control for 
Distributed Micro Air Vehicles,” proc. Of the IEEE 
Conference on Computational Intelligence in Robotics and 
Automation, IEEE, 174-179 


