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We investigated effects of task interruption on procedural performance, focusing on the effect of
interruption length on the rates of different categories of error at the point of task resumption. Interruption
length affected errors involving loss of place in the procedure (sequence errors) but not errors involving
incorrect execution of a correct step (nonsequence errors), implicating memory for past performance,
rather than generalized attentional resources, as the disrupted cognitive process. Within the category of
sequence errors, interruption length produced a complex pattern of effects, with repetitions of the
preinterruption step showing different effects than errors at other offsets from the correct step. A
cognitive model we developed previously accounts for the results in terms of decay and rehearsal of
memory for past performance and activation spreading through a procedural representation of task
knowledge. The model links different types of errors to different cognitive processes, informs potential
interventions, and predicts interruption effects for sequential tasks like problem solving and counting.
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One important characteristic of many tasks that people encoun-
ter at work or in the home is that they are procedural, meaning that
they involve a sequence of steps that must be performed in a
specific order without omissions or repetitions. Consider the sol-
dier’s or police officer’s task of cleaning a weapon. An important
step is to check that the chamber is empty, and skipping this step
is a potentially catastrophic omission. Alternatively, consider the
task of administering a dose of medication to a patient. Skipping
the dose would cause one problem, but administering the dose and
failing to record it on the patient’s chart could cause a different
problem, if someone then repeats the dose later because there is no
record that it was already administered. Many tasks in the medical
domain are vulnerable to these kinds of errors, as are tasks in many
other domains, including maintenance procedures, legal proce-
dures, computer programming and technical support, building con-
struction and civil engineering, data analysis, tax preparation and
accounting, chores around the home, and so on. Sequential con-
straints also play a role in such basic cognitive processes as serial
recall, language production (Dell, Burger, & Svec, 1997), event

counting (Carlson & Cassenti, 2004), and problem solving (Car-
penter, Just, & Shell, 1990).

A second important characteristic of many of the same task
environments is that performance is susceptible to interruptions of
various kinds and lengths. Interruptions take many forms, includ-
ing communications from others (e-mails and texts, phone calls,
knocks on the door) or internally generated task switches (Katidi-
oti, Borst, & Taatgen, 2014). When an interruption is over—
assuming one remembers there is an interrupted task to return to
(Grundgeiger, Sanderson, & Dismukes, 2014)—there may ensue a
“Where was I?” moment as one tries to recall one’s exact place in
the task. Such moments seem to be commonplace in everyday
experience. In laboratory tasks, interruptions generally cause a
time lag (e.g., Altmann & Trafton, 2007; Hodgetts & Jones, 2006;
Monk, Boehm-Davis, & Trafton, 2004) or an increase in error rates
(e.g., Altmann, Trafton, & Hambrick, 2014; Li, Blandford, Cairns,
& Young, 2008) at the point of task resumption. In the field,
interruptions increased medication administration errors by over
12% in one study (Westbrook, Woods, Rob, Dunsmuir, & Day,
2010).

Here we examine the effects of the length of an interruption on
performance immediately after the interruption, focusing on the
empirical question of whether different kinds of errors are affected
differently by interruption length, and the related theoretical ques-
tion of what underlying cognitive mechanisms mediate the effects.
Concerning the empirical question, the task we use (Altmann et al.,
2014) affords measurement of various kinds of errors. Sequence
errors reflect loss of place in the procedure, whereas nonsequence
errors reflect incorrect execution of the correct step. Further, a
sequence error can be near to or far from the correct step within the
task sequence. Dissociations between these different kinds and
levels of error would have practical implications for task environ-
ments in which some errors are costlier than others.
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Concerning the theoretical question, we recently developed a
model of the memory mechanisms involved in selecting the next
step of a procedure under conditions of task interruption (Altmann
& Trafton, 2015). The model has broad scope, incorporating
representations of procedural knowledge and how it is primed
during performance, episodic memory for past performance and
how it decays over time, and rehearsal of placekeeping information
during interruptions. We use this model here to account for the
effects of our interruption length manipulation specifically on
sequence errors.

For the interruption length manipulation itself we chose levels
that map onto a range of situations that people encounter outside
the lab. Our shortest length is about 3 s, which is roughly the time
required to find one’s phone to turn it off when it starts ringing in
the middle of a meeting. Our longest length is about 30 s, which is
long enough to have a meaningful conversation if one chooses to
answer the phone, if only to negotiate a better time to talk. The
manipulation is parametric, with four levels, to help isolate the
nature of interactions between interruption length and type of error
that might have practical or theoretical implications.

To preview our results, we found that interruption length af-
fected sequence errors but not nonsequence errors, suggesting that
disrupted memory was central to the behavioral effects of inter-
ruption. The effect on sequence errors resembled a standard cur-
vilinear forgetting function (Rubin & Wenzel, 1996), but only at
an aggregate level. At a more detailed level, the effect varied with
the offset of the error, meaning the proximity of the incorrect step
to what would have been the correct step. Specifically, repetitions
of the most recently performed step showed a markedly different
trend across levels of interruption length than other sequence
errors. We examine the theoretical and practical implications of
this pattern in the General Discussion.

Method

Participants

Participants were members of the Michigan State University
community. The sample size was 400, with 100 participants in-
cluded in each of four interruption length conditions (very short,
short, medium, and long). Participants received either credit to-
ward a course requirement or payment of $10 (none were paid in
the very short condition, 10 were paid in the short condition, 18
were paid in the medium condition, and 16 were paid in the long
condition). Sixteen additional participants were excluded because
they performed below a target accuracy level that we describe in
the Procedure section. Data from one condition were previously
published (Altmann et al., 2014), as we describe in the Experi-
mental Design section.

Materials

The procedural component of the task is defined by the acro-
nymic word UNRAVEL. Each letter identifies a step of the pro-
cedure, and the letter sequence identifies the correct order of the
steps. The order is therefore defined in terms of a word likely to be
in the lexicon of English-speaking participants, so that interpreta-
tion of sequence errors is not confounded by lack of task knowl-
edge on the part of the performer (Reason, 1990). Participants

perform the UNRAVEL sequence in a loop, starting over with U
after they reach L. In an average session the participant cycles
through the loop about 38 times.

On each trial the participant performs one step. A stimulus is
presented and the participant makes a choice regarding the stim-
ulus feature dictated by the step the participant thinks is correct for
that trial. Figure 1a shows two sample stimuli that illustrate the
various stimulus features. Each stimulus has two characters, one a
letter (A, B, U, or X) and one a digit (1, 2, 8, or 9), both randomly
selected from the set of four options. Each stimulus also has a font
style (underline or italics), color (red or yellow), and location
outside the gray outline box (above or below), each randomly
selected from the set of two options, and then assigned randomly
and independently to one character or the other.

Figure 1b shows the choice rule for each step. The choice for the
U step is whether the font style is underline or italic, for the N step
is whether the letter is near to or far from the start of the alphabet,
for the R step is whether the color is red or yellow, for the A step
is whether the character outside the box is above or below, for the
V step is whether the letter is a vowel or a consonant, for the E step
is whether the digit is even or odd, and for the L step is whether
the digit is less than or more than 5. The letter for each step
mnemonically identifies one of the two candidate responses for
that step—u for underline, n for near to, r for red, a for above, v
for vowel, e for even, and l for less-than. All 14 of the candidate
responses are different, so any given response indicates what step
the participant thought was correct on that trial. Each stimulus

Figure 1. (a): Two sample stimuli for the UNRAVEL task (the 9 is red
and the X is yellow). (b): Choice rules and candidate responses for the
UNRAVEL task, and the correct responses according to each rule for the
two sample stimuli in (a). (c): A sample display for the interrupting task,
after the participant has typed the first four letters of the “code.” See the
online article for the color version of this figure.
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affords the performance of any of the seven steps, so information
about which step to perform next has to be maintained in memory.
There is no particular significance to the number of rules other
than the practical constraints involved in developing an acronym
that includes a candidate response from every rule.

Performance is interrupted periodically between one trial and
the next, on average every six trials. The number of trials between
interruptions is three or greater, with the exact number randomized
to produce a flat hazard function, after the third trial, for the next
trial being the last trial before the next interruption (Altmann et al.,
2014). The average of six trials between interruptions, given the
procedure length of seven steps, ensures that interruptions are
evenly distributed across all steps. An interruption begins imme-
diately after a response to a trial, with presentation of a string of
letters to type into a box. Figure 1c shows a sample interruption
display. The letters to be typed are sampled from the 14 candidate
UNRAVEL responses, our aim being to frustrate use of the key-
board as an external memory for placekeeping information. After
typing the letters, the participant presses the Return key, and the
computer detects any errors at that point. If there are errors, the
screen flashes, the box is cleared, and the participant tries to type
the same string again. We manipulated interruption length by
varying the number of letters to be typed, as described in the
Experimental Design section.

Procedure

Participants were tested individually in sessions lasting 30 to 50
min, with much of the variability in session length due to the
differences in interruption length. A session began with an intro-
duction to the UNRAVEL sequence that described each step and
emphasized how it corresponded mnemonically to a letter of the
acronym. After all the steps were introduced, a screen appeared
spelling out the acronym and showing the choice rule for each
letter (essentially the first two columns of Figure 1b). After this,
there were 16 practice trials during which the computer required
the correct response on each trial before allowing the participant to
move on. This 16-trial sequence was interrupted twice to illustrate
the requirement to resume one’s place in the sequence after an
interruption. The experimenter remained present during this period
to help if necessary. A sheet of paper with the information in the
first two columns of Figure 1b remained visible to the side of the
computer throughout the session.

In preparation for the test phase of the session, participants were
reminded to “please try to keep your place in the UNRAVEL
sequence,” and, after an interruption, to “please try to pick up in
the sequence where you left off.” During the test phase the com-
puter accepted any of the 14 candidate responses in Figure 1b as
the response for any trial. A sequence error was coded as a step
performed on one trial that was not the immediate successor in
UNRAVEL of the step performed on the previous trial. For ex-
ample, if a participant performed U, R, and A on three successive
trials, the R trial was coded as a sequence error because N was
skipped, but the A trial was coded as a correct step because the
previous trial was R. A nonsequence error was defined as an
incorrect choice for the correct step. No error feedback was given
after trials. After a response, the next event (trial or interruption)
began immediately.

There were four blocks of trials in the test phase, each with 10
interruptions. There were six trials between interruptions, on av-
erage, as we described earlier, and there was a run of trials before
the first interruption, so there were approximately 11 � 6 � 66
trials per block and 4 � 66 � 264 trials per session. After each
block the computer presented the participant’s score, computed as
the percentage of trials that block with neither a sequence error nor
a nonsequence error. If the score was above 90%, the participant
was asked to go faster; if the score was below 70%, the participant
was asked to be more accurate and that block was excluded from
analysis (17 cases: one in the very short condition, three in the
short condition, nine in the medium condition, and four in the long
condition; conditions are defined in the Experimental Design sec-
tion). A participant was replaced if they scored below 70% on two
or more blocks (12 cases: four in the very short condition, two in
the short condition, and six in the long condition). A participant
was also replaced if their accuracy on the postinterruption trial was
not significantly above chance (four additional cases: one in the
short condition, one in the medium condition, and two in the long
condition); in such cases, we assumed the participant was not
following the instruction to try to resume their place in the se-
quence after an interruption.

Experimental Design

There were three experimental factors: interruption length, off-
set, and trial type. Interruption length is a between-participants
factor with four levels, differing in the number of letters to be
typed during an interruption. For very short interruptions, partic-
ipants typed two letters per interruption (net of errors). This
condition is previously published data (Experiment 2 of Altmann
et al., 2014). For short, medium, and long interruptions, partici-
pants typed one, two, or three sets of 14 letters per interruption,
respectively, with each set comprising a random permutation of the
14 candidate UNRAVEL responses (Figure 1b). These three con-
ditions are new data. The procedure for the four conditions was
identical except for interruption length, and the samples were
drawn from the same population, so we treat them as matched by
random assignment. To evaluate the similarity of the groups, we
also compare them on measures not affected by interruption
length. Interruption durations for the four levels were 2.76 s, 13.12
s, 22.02 s, and 31.91 s. (Interruption durations were means of
untrimmed participant means, measured from onset of the inter-
ruption display to the Return keypress for the last correctly typed
“code.”) The spacing between durations was similar enough that
for purposes of trend analysis we treat interruption length as a
linear scale.

Offset is a within-participant factor that applies only to sequence
errors (not to nonsequence errors or response times). The offset of a
sequence error is the number of steps skipped forward or backward in
the task sequence when that error occurred. In our task, there are
seven steps and therefore six offsets: �3, �2, �1, �1, �2, and �3.
For example, if a participant performed the R step on one trial and the
U, N, R, V, E, or L step on the next trial, the offset of the sequence
error on the latter trial would be �3, �2, �1, �1, �2, or �3,
respectively.

Trial type is a within-participant factor with two levels, postin-
terruption and baseline. The postinterruption trial is the first trial
after an interruption and bears the brunt of interruption effects in
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this procedure (Altmann et al., 2014; cf. Altmann & Trafton,
2007). Baseline trials are all other trials and provide a measure of
uninterrupted performance to contrast with interrupted perfor-
mance.

Results

Figure 2 plots sequence errors, nonsequence errors, and re-
sponse times (RTs) as a function of interruption length and trial
type. Sequence errors are aggregated over offset. RTs are means of
untrimmed participant means on correct trials, measured from
onset of a trial stimulus to the response to that stimulus.

We examined each of the three measures with a 4 (interruption
length) � 2 (trial type) analysis of variance (ANOVA). Sequence
errors increased with interruption length, F(3, 396) � 21.94, p �
.001, �p

2 � .143, and were more frequent on the postinterruption
trial than on baseline trials, F(1, 396) � 365.27, p � .001, �p

2 �
.480. The Interruption Length � Trial Type interaction was sig-
nificant, F(3, 396) � 29.12, p � .001, �p

2 � .181, and follow-up
analyses revealed an effect of interruption length for the postint-
erruption trial, F(3, 396) � 25.86, p � .001, �p

2 � .164, but not for
baseline trials, F � 1.

Nonsequence errors were not affected by interruption length,
F(3, 396) � 1.67, p � .174, �p

2 � .012, but were less frequent on
the postinterruption trial (M � 2.09%) than on baseline trials (M �
2.40%), F(1, 396) � 5.23, p � .023, �p

2 � .013. The Interruption
Length � Trial Type interaction was not significant, F � 1.05.

RT increased with interruption length, F(3, 396) � 9.59, p �
.001, �p

2 � .068, and was slower for the postinterruption trial than
for baseline trials, F(1, 396) � 272.44, p � .001, �p

2 � .408. The
Interruption Length � Trial Type interaction was significant, F(3,
396) � 37.02, p � .001, �p

2 � .219, and follow-up analyses
revealed an effect of interruption length for the postinterruption
trial, F(3, 396) � 21.35, p � .001, �p

2 � .139, but not for baseline
trials, F(3, 396) � 1.84, p � .140, �p

2 � .014. Thus, the RT results
generally mirrored the sequence error results.1

In Figure 3, the upper panel plots postinterruption sequence
errors from Figure 2 against the average duration of the interrup-
tion at each level of interruption length, to highlight the trend in
error rates across interruption lengths. The trend was negatively
accelerating, with trend analysis showing both a significant linear
component, F(1, 396) � 72.43, p � .001, �p

2 � .155, and a
significant quadratic component, F(1, 396) � 5.09, p � .025, �p

2 �
.013.

The lower panel of Figure 3 plots the data from the upper panel
separated by the step of the UNRAVEL sequence that would have
been correct on the postinterruption trial had there been no se-
quence error. We found previously that interruption effects were
not strongly modulated by this factor, even though the steps have
different levels of difficulty (Altmann et al., 2014), and we found
a similar pattern here. A 4 (interruption length) � 7 (step in UN-
RAVEL) ANOVA revealed an effect of interruption length, F(3,
390) � 26.43, p � .001, �p

2 � .169, an effect of step, F(6, 2340) �
10.54, p � .001,�p

2 � .026, and a marginal interaction, F(18, 2340) �
1.55, p � .065, �p

2 � .012. The step effect and the marginal interaction
were driven by the U step. A follow-up analysis on the U step
revealed an effect of interruption length, F(3, 390) � 4.67, p � .003,
�p

2 � .035, a linear trend, F(1, 390) � 11.97, p � .001, �p
2 � .030, and

no quadratic trend, F � 1. A follow-up analysis on steps other than U
revealed an effect of interruption length, F(3, 390) � 27.16, p � .001,
�p

2 � .173, a linear trend, F(1, 390) � 73.78, p � .001, �p
2 � .159, and

a quadratic trend, F(1, 390) � 6.33, p � .012, �p
2 � .016, but no effect

of step, F(5, 1950) � 1.73, p � .126, �p
2� .004, and no Interruption

Length � Step interaction, F � 1.03. The lower error rate on U than
on other steps suggests that when participants forgot the correct step,
they tended to resume with the “first” step of the sequence, causing an
elevated rate of guessing the U step correctly.

Figure 4 plots postinterruption sequence errors by offset, reveal-
ing a complex pattern that was masked in Figure 3, where the data
were aggregated over offset. Specifically, Offset �1 (filled circles)
showed different effects of interruption length than did other
offsets. (Offsets �2 and �2 showed similar effects, as did Off-
sets �3 and �3, and these pairs remain aggregated in Figure 4 to

1 In the Experimental Design section, we noted that the very short
condition was previously published, raising the question of whether that
group was comparable to the others. The null effects of interruption length
on all measures of baseline performance are evidence that the groups were
similar and that we are justified in treating the very short condition as one
level of the experimental manipulation.
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reduce clutter; all offsets are plotted separately in Figure A2 in the
Appendix.) Errors at Offset �1 increased sharply between very
short and short interruption lengths and then leveled off, whereas
the error rate at other offsets increased gradually and linearly. A 4
(interruption length) � 6 (offset) ANOVA showed a significant
Interruption Length � Offset interaction, F(15, 1980) � 4.83, p �
.001, �p

2 � .035. One-way ANOVAs on interruption length for
each level of offset showed significant main effects and significant
linear trends in each case, ps � .001. For Offset �1 there was also
a significant quadratic trend, F(1, 396) � 17.32, p � .001,�p

2 �
.042, but this was largely driven by the difference between very
short and short interruptions, with no significant difference across
short, medium, and long interruptions, F(2, 297) � 1.60, p � .204,
�p

2 � .011. No other offset showed a quadratic trend, ps � .330.
There were not enough observations per participant to separate the
data by step, so we could not extend the analysis in the bottom
panel of Figure 3.

Discussion

We examined effects of interruption length on procedural per-
formance parametrically across a range of practically relevant
interruption durations—from about 3 s to about 30 s. Without
considering the offset factor, which measures the proximity of a
sequence error to the correct step, sequence errors on the postin-
terruption trial increased with interruption duration with the kind
of negatively accelerating trend (Figure 3, upper panel) one might
expect from a standard forgetting function. Postinterruption RTs
mirrored this pattern, with slower responses at longer interruption
lengths (Figure 2, lower panel). Nonsequence errors showed no
effect of interruption length (Figure 2, middle panel).

Taking the offset factor into account, postinterruption sequence
errors showed a complicated pattern (Figure 4) that is difficult to
interpret in terms of a single forgetting mechanism. Repetitions of
the most recently performed step (i.e., errors at Offset �1) in-
creased sharply from very short to short interruptions, and then
leveled off across short, medium, and long interruptions, whereas
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steps other than U.
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errors at other offsets increased more gradually and essentially
linearly across the full range of interruption lengths.

In the following sections, we interpret the results theoretically,
identify practical implications, and address some limitations of our
results and method.

Theoretical Interpretation

Our results speak to two different theoretical questions. The first
concerns the cognitive basis of the disruptive effects of interrup-
tion. Phenomenologically it often seems that interruptions have a
startling or discombobulating effect such that after an interruption
it can be difficult to focus again on the interrupted task. In
theoretical terms one could explain this effect in terms of a
generalized loss of attentional resources available to focus on task
resumption.

Our data weigh against such an attentional resources account, at
least as applied to the kind of interruption conditions we studied
here. If attention, broadly defined, were disrupted following an
interruption, an effect of interruption length should have been
visible on all behavioral measures on the postinterruption trial.
Instead, nonsequence errors showed no effect of interruption
length, and indeed were less frequent on the postinterruption trial
than on baseline trials (Figure 2). The pattern across the three
measures suggests that the effect of interruption length on se-
quence errors and RTs was linked to degraded memory for place-
keeping information from before the interruption. One important
qualification is that interruptions in our task environment may not
have been the best measure of interruptions that are startling or
discombobulating, a point we revisit in the Limitations section.

The second theoretical question concerns the nature of the
memory representations that degrade during interruptions. As plot-
ted in Figure 3, the effect of interruption length on sequence errors
suggests a single memory representation degrading according to a
standard curvilinear forgetting function (Rubin & Wenzel, 1996),
as we envisioned in our original conception of interruption effects
(Altmann & Trafton, 2002). However, when sequence errors are
separated by offset, as in Figure 4, the effect of interruption length
is more complex. Indeed, the familiar shape of the forgetting
function in Figure 3 turns out to be an illusion caused by aggre-
gation.

To account for our results, we fit the data with a model of
placekeeping developed by Altmann and Trafton (2015). That
study addressed different questions than those we address here, but
used the same task, and here we asked whether the model could
offer an account of the complex interaction of interruption length
and offset plotted in Figure 4. The lines in Figure 4 are the mean
theoretical values from the model, averaged over individuals. Here
we summarize how the model accounts for our data, and in the
Appendix present the model formalisms.

The model accounts for our data in terms of differences in the
operating principles of semantic and episodic memory. Semantic
memory stores a stable long-term representation of the task se-
quence in which each step is associatively linked to its successor.
Focusing on one step spreads activation to that step’s immediate
successor, much as focusing on a node in a semantic network
spreads activation to neighboring nodes in the network. This
spreading activation constitutes an implicit memory for the correct
next step.

Spreading activation decays during interruptions, gradually re-
turning the immediate successor to its base level of activation. If
spreading activation were to decay completely, all steps of the task
sequence would be at their base level of activation and therefore
have an equal chance of being selected as the next step. Gradual
decay toward this base level during interruptions causes a gradual
linear increase in the sequence error rate at all offsets, as all
incorrect steps grow more likely to intrude on the correct step.
Spreading activation also reaches beyond the immediate successor,
attenuating with each additional step it travels forward in the task
sequence. This spread primes the step after the immediate succes-
sor, for example, causing it to intrude at an elevated rate, explain-
ing why errors are more frequent at Offset �1 than at Offset �2.

Episodic memory stores a record of past performance that the
system can sample for cues that can then serve to prime the next
step in semantic memory. The contents of episodic memory decay,
like spreading activation, but this decay continues without bound,
to counteract buildup of proactive interference as the system
continually encodes new episodic memories (Altmann, 2013; Alt-
mann & Gray, 2002, 2008; Altmann & Schunn, 2012). This
unbounded decay creates an activation ranking in which a memory
for the most recent trial is the most active, a memory for the next
most recent trial is the next most active, and so on. After an
interruption, the system retrieves the most active item and uses it
as a prime for the next step. Usually, the most active item will
represent the preinterruption trial, which primes the correct suc-
cessor. However, random fluctuation in activation levels (i.e.,
activation noise) means that sometimes the most active item will
represent the prepre-interruption trial, which primes the preinter-
ruption step and therefore leads to an error at Offset �1. Memories
of older trials will have decayed enough that they are unlikely to
be retrieved, so errors at Offsets �2 and �3 (and earlier, in the
general case) are unlikely. Thus, retrieval errors from episodic
memory mainly cause errors at Offset �1. In the Appendix we
quantify the activation levels and retrieval probabilities associated
with this analysis (see, in particular, Figure A1).

The effect of interruption length on retrieval errors from epi-
sodic memory, and thus sequence errors at Offset �1, depends on
rehearsal. The model incorporates a representation of rehearsal in
episodic memory, which participants often report using to keep
placekeeping information active during interruptions (Altmann &
Trafton, 2015; Trafton, Altmann, Brock, & Mintz, 2003). The
model parameter governing rehearsal (E, described in the Appen-
dix) is the time lag required to set up rehearsal at the start of the
interruption. The longer this lag, the higher the error rate at
Offset �1 on the postinterruption trial. The underlying mechanism
is that during the lag, memory for the preinterruption trial decays
relative to memory for the prepre-interruption trial, increasing the
probability that a memory for the prepre-interruption trial intrudes
when rehearsal begins. Once established, rehearsal maintains the
rehearsed item in an active state for the balance of the interruption,
while other items decay, ensuring that the rehearsed item primes
the next step on the postinterruption trial. Thus, the error rate at
Offset �1 on the postinterruption trial is affected by the duration
of the lag to set up rehearsal but not by the duration of an
interruption beyond this lag.

These decay and rehearsal mechanisms explain why Offset �1
responded differently to the interruption length manipulation than
did other offsets (Figure 4). Specifically, the error rate at Off-
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set �1 increased with interruption length until interruption length
exceeded the lag to set up rehearsal, and then leveled off. The
empirical trend across short, medium, and long interruptions is
consistent with a theoretical leveling off because those lengths did
not differ significantly (note the large error bars in Figure 4). These
mechanisms predict that conditions that increase the lag to set up
rehearsal, or that interfere with rehearsal after it is established,
should increase postinterruption sequence errors mainly at Off-
set �1, a point we consider again below.

In sum, our data suggest that interruption length affected mem-
ory processes, and our model suggests that it affected more than
one. There is an implicit memory for the next step to be performed,
an explicit memory for the last step that was performed, and a
rehearsal process that affects the explicit memory. As the implicit
memory decays, all steps become more likely to intrude, affecting
errors at all offsets. As the explicit memory decays, its predecessor
becomes more likely to intrude, affecting error rates at Offset �1.
The model is complex, but so is the empirical pattern, which does
not resemble any single forgetting function. The model is also
precisely formulated, as we show in the Appendix, and accounts
for our data without modification from its original form (Altmann
& Trafton, 2015). Finally, it makes a prediction, which is that
blocking rehearsal during interruptions should affect sequence
errors primarily involving repetition of the preinterruption step.

Practical Implications

Our data indicate that there are robust gradients to sequence
errors in which the most likely errors after an interruption involve
repeating or skipping a single step (errors at Offset �1 and
Offset �1, respectively). This pattern holds across the full range of
interruption lengths in our manipulation (Figure 4; see also Figure
A2 in the Appendix, which emphasizes the gradients for both
postinterruption and baseline trials). Thus, when a procedure in-
volves a critical step that should not be skipped or repeated, such
as administering a dose of medication, that step should be buffered
against interruptions occurring immediately before or after.

Our results also suggest that interruptions influence perfor-
mance primarily by affecting memory for the state of the task
environment before the interruption. Sequence errors, which re-
flect loss of memory for past performance, increased substantially
with interruption length. In contrast, nonsequence errors, which are
independent of memory for past performance, were slightly but
significantly less frequent on the postinterruption trial compared
with baseline trials, and were unaffected by the interruption length
manipulation. RT effects mirrored sequence error effects, linking
the resumption lag often associated with interruptions (e.g., Grund-
geiger, Sanderson, MacDougall, & Venkatesh, 2010) primarily to
costs of memory retrieval. Accordingly, our results suggest that
interruptions function as retention intervals and not so much as
distractions that affect attention or other nonmemorial processes.
This view suggests that interventions to reduce error and time costs
of interruption should focus mainly on better support, or reduced
need, for postinterruption memory retrievals (see also Edwards &
Gronlund, 1998, and Oulasvirta & Saariluoma, 2006). This view
also implies that people will sometimes forget the interrupted task
altogether. In our procedure, the interrupted task was the only one
available after an interruption, but this is not always true, and when

there are other options people often choose them (Dodhia &
Dismukes, 2009).

Our model suggests that the type of error most likely to be
reduced by interventions that improve memory support will be
incorrect repetitions of the preinterruption step (i.e., errors at
Offset �1). The underlying mechanism is that errors in remem-
bering preinterruption performance (as a prime for the next
step) are most likely to involve confusions between preinter-
ruption and prepre-interruption events. If the latter is mistaken
for the former, the result will be a repetition of the preinter-
ruption event. Maintaining an accurate memory for preinterrup-
tion performance, by whatever means, should minimize this
particular confusion.

However, our model also suggests there are limits on what
can be accomplished with improved memory support. The
model assumes that knowledge representations required for task
performance are primed through task performance, in that fo-
cusing on task-related elements (steps of the procedure, here)
spreads activation to associated knowledge elements. The
model also assumes that this spreading activation decays during
interruptions, in a way that is not affected by memory strategies
like rehearsal. If these assumptions are correct, meaning that the
best way to activate task representations is through actual task
performance, then interruption costs may be difficult to mitigate
by any means other than restructuring the task to avoid inter-
ruptions.

At the same time, decay of spreading activation suggests that
there may be at least a limited benefit of interruptions in
reasoning or problem-solving tasks. If search through a space of
possible solutions to a problem has reached a dead end, and this
dead end is represented mentally in terms of a particular set of
activated knowledge elements and intermediate products, the
model predicts that an interruption could allow this activated
context to decay and therefore allow search to take a more
productive path afterward.

One specific activity that our results address is counting, a
basic cognitive tool that people use in a wide variety of every-
day situations. In the lab, counting errors have been studied by
showing participants a sequence of events, such as asterisks
appearing on the screen, and asking them to report the total
count after the last event occurs (e.g., Carlson & Cassenti,
2004). A task that involves counting events or objects— cars on
the road, repetitions of an exercise, people in a venue with a
capacity limit—is procedural if one views the natural numbers
as the task sequence and the operation of updating the count as
the selection of the next step.

Our data suggest that when a counting task is interrupted, the
type and range of errors in the total count at the end of the task will
depend on the number and length of the interruptions during the
task. A series of short interruptions should lead to a modest
undercount, because the most likely error after each interruption is
a single step backward in the natural numbers (an error at Off-
set �1). As interruption length increases, so should the probability
of a wholesale loss of accuracy, as errors at all offsets become
more frequent. Viewed as a task sequence, the natural numbers
have a practically large and theoretically infinite number of steps,
so the variance associated with a wholesale loss of accuracy after
a long interruption should be much greater than in our task.
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Limitations

One limitation of our task is that placekeeping is entirely mem-
ory based, whereas real-world task environments often offer ex-
plicit memory support, such as “to do” lists and checklists (see,
e.g., Gawande, 2010). Such support does not negate a role for
memory in placekeeping, if only because the acts of recording
something on a list and referring to a list are themselves steps that
can be skipped (see also Dismukes & Berman, 2010). Nonetheless,
perceptual placekeeping clearly plays a role in many task environ-
ments, and measuring and modeling its effects is an important goal
for future work.

Other limitations concern the task’s timing parameters. For
example, the baseline time to perform a step was just over 2 s
(Figure 2), and although some procedural tasks unfold this quickly,
many do not. Our model predicts that more time between steps
should increase the temporal distinctiveness and thus the accuracy
of memory for performed steps (Altmann & Hambrick, in press),
thereby reducing errors at Offset �1. Thus, our empirical results
may overestimate the rate of such errors generally. A second
example is the interval between one interruption and the next,
which was 10 to 15 s. Even in highly dynamic environments such
as intensive care units, interruptions occur every couple of minutes
(Spooner, Corley, Chaboyer, Hammond, & Fraser, 2015) rather
than every few seconds. We would expect that interruptions that
are less frequent, or that are engrossing in some way (Einstein,
McDaniel, Williford, Pagan, & Dismukes, 2003), would be asso-
ciated with less frequent use of active memory strategies for
maintaining placekeeping information during interruptions. Our
model predicts that less maintenance of placekeeping information
during interruptions should increase errors at Offset �1, in which
case our empirical results may also underestimate the rate of such
errors generally. These conflicting estimates highlight both the
need to understand differences between source and target tasks
when generalizing results, and the role of a cognitive model in
helping the analyst decide what those differences might mean.

One characteristic of our task that may or may not be a limita-
tion is its abstract nature. Nothing in the materials, the task
sequence, or the choice rules bears any resemblance to real-world
task environments we know of. In contrast, other laboratory tasks
are often designed with cover stories that add face validity, as in
the simulated military planning task we have used in previous
interruption research (e.g., Altmann & Trafton, 2007). However,
we would argue that a cover story adds little actual external
validity unless it preserves the complexity of authentic versions of
the task, and therefore a role for training and knowledge. Cover
stories also introduce the possibility that results are tied in some
way to cover story details, and may add error variance if back-
ground knowledge about the cover story varies across individuals.
Thus, we would argue that an abstract task has advantages over a
task that looks more authentic than it really is.

In recent work, we have taken a differential approach to validating
the UNRAVEL task, asking whether variability in UNRAVEL per-
formance across individuals predicts variability in performance
of other tasks. In one study (Hambrick & Altmann, 2015) we
found that UNRAVEL performance predicts individual differ-
ences in general cognitive ability (Gf), which has predictive
validity for a wide range of other tasks. The mechanistic con-
nection between placekeeping and Gf, and possible predictive

validity of UNRAVEL for specific workplace tasks, are issues
to be explored in future work.
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Appendix

A Formal Cognitive Model of Placekeeping in the UNRAVEL Task

Here we describe the model that we fit to our data. The model
was developed by Altmann and Trafton (2015) to address ques-
tions unrelated to those we address here. We applied it here to see
if it could help explain the complex interaction of interruption
length and offset evident in Figure 4. We describe the model in full
but refer the reader to Altmann and Trafton (2015) for a more
complete account of underlying assumptions.

The first section provides an overview of the basic theoretical
constructs. The second section describes the model parameters.
The third section presents the equations that specify activation
levels and retrieval probabilities of memory codes and the associ-
ated probabilities of sequence errors. The fourth section describes
the model fitting procedure and an assessment of model fit. The
model, empirical data, and figure and table sources are posted
online at msu.edu/�ema/interruptionlength/.

Model Overview

The model is based on two main theoretical ideas about the rela-
tionship between memory and performance. The first is that con-
trolled performance on each trial of a procedure like ours is guided by
a code in episodic memory that represents the processing context for
that trial (Hommel, Musseler, Aschersleben, & Prinz, 2001; Neill,
1997). Because this code is represented in episodic memory, it persists
for a time after performance of the trial is complete. The set of such
control codes represents a history of recent performance that is avail-
able to help guide future performance (Altmann, 2011, 2013; Alt-
mann & Gray, 2008; Trafton, Altmann, & Ratwani, 2011).

We identify each such control code as a predecessor, indexed
according to the distance of the associated trial from the present.
For example, pred1 is from the most recently performed trial,

(Appendix continues)
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pred2 is from the trial before that, and so on. Predecessors decay
over time, creating an activation ranking in which pred1 is the most
active, pred2 the next most active, and so on. Decay of predeces-
sors continues without bound, so that old predecessors effectively
vanish from the system, making room for new ones (Altmann &
Gray, 2002, 2008; Altmann & Schunn, 2012).

The second theoretical idea is that task knowledge is represented
as an associative chain that functions much like any semantic
network in terms of activation spreading between nodes. Each step
(node) in the chain is associatively linked to its successor, which
is indexed relative to whichever step currently occupies the sys-
tem’s focus of attention; succ1 is the immediate successor to the
step in focus, succ2 is the next successor, and so on. The step in the
focus of attention serves as an activation source that spreads
activation forward through the chain. Spreading activation atten-
uates as it spreads, creating an activation ranking in which succ1 is
the most active, succ2 is the next most active, and so on. Spreading
activation also decays over time when the focus of attention shifts
to another task during interruptions. Unlike predecessors, succes-
sors decay only to their base level of activation, which they have
because they are stable elements of long-term knowledge.

Under these operating principles, the system can select the next
step with high accuracy by performing two successive memory
retrievals. The first retrieves the most active predecessor as a prime
to focus on and the second retrieves the most active (primed)
successor. The retrieved codes are usually pred1 and succ1, respec-
tively, but activation noise can transiently alter the activation
ranking of predecessors or successors, causing a memory error that
in turn causes a sequence error. For example, if pred2 happens to
be transiently more active than pred1, pred2 will be retrieved and
then prime its succ1, which is the step the system just performed;
performing that step again would be a sequence error at Offset �1.
For uniformity we assume that the same mechanisms govern
placekeeping on the postinterruption trial and on baseline trials,
and use data from both trial types to constrain the model.

The decay functions for predecessors and successors are both
negatively accelerating, meaning that decay during interruptions
increases interference. Specifically, during interruptions pred1

loses more activation than older predecessors and succ1 loses more
activation than more distant successors, causing older predecessors
and more distant successors to be more likely to intrude on pred1

or succ1, respectively. However, the decay functions differ in that
predecessors decay without bound whereas successors decay only
to their base level of activation (see Figure A1, discussed in detail
in the Model Equations section). Among predecessors, then, only
pred2 has any real chance of being retrieved in place of pred1,
because older predecessors are too decayed to intrude. In contrast,
any successor has some chance of being retrieved in place of a
decayed succ1, because all successors have a base level of activa-
tion associated with being stable elements of knowledge. Thus,
decay of pred1 during an interruption affects mainly errors at
Offset �1 on the postinterruption trial, whereas decay of succ1

during an interruption affects errors at all offsets on the postinter-
ruption trial.

A common strategy for maintaining placekeeping information in
an active state during interruptions is rehearsal (Altmann & Traf-
ton, 2015; Trafton et al., 2003), which we model by assuming that
rehearsal targets pred1 (Altmann & Trafton, 2015). There is a lag
to establish rehearsal, during which pred1 decays relative to pred2,
increasing the chances that pred2 interferes and ends up being the
code that is rehearsed. Once established, rehearsal maintains the
rehearsed code for the rest of the interruption, and the rehearsed
code then primes its successor on the postinterruption trial. Thus,
the lag to establish rehearsal at the start of the interruption—not
directly the interruption length itself—affects the probability that
pred2 is rehearsed instead of pred1 and thus the probability of a
sequence error at Offset �1 on the postinterruption trial.

Model Parameters

The model comprises equations that characterize activation lev-
els and retrieval probabilities for predecessors and successors. We
fit these equations to each participant’s data by estimating the
values of five free parameters. We describe the parameters in this
section and the equations in the next section.

(Appendix continues)

Figure A1. Activation functions (upper panels) and retrieval probabilities
(lower panels) for the postinterruption trial, plotted using the mean param-
eter values from the very short and long interruptions conditions (see Table
A1). Error bars are 	1 standard deviation of activation noise. Upper left
panel: Activation of predecessors (Equation A1). Upper right panel: Acti-
vation of successors (Equation A4). Lower left panel: Retrieval probability
of predecessors (Equation A3) for d � 1. Lower right panel: Retrieval
probability of successors (Equation A5) for d � 1.
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The first parameter, E, represents the lag to set up rehearsal at
the start of the interruption. During this lag, pred1 decays relative
to pred2, increasing the chances of an error at Offset �1 on the
postinterruption trial. Accordingly, E is the effective interruption
duration as far as errors at Offset �1 are concerned. E is one factor
determining predecessor age in Equation A2, defined in the next
section. We have no direct measure of E, so estimates of E are
largely driven by the error rate at Offset �1 on the postinterruption
trial.

The second parameter, s, governs noise in activation levels.
Noise is operationalized as a random sample from a zero-mean
logistic distribution taken independently for every memory ele-
ment on every system cycle and added to that element’s total
activation. s is related by a transformation to the standard deviation
of the distribution, so a larger s means more noise. s affects the
mapping from activation levels to retrieval probabilities in Equa-
tions A3 and A5.

The third and fourth parameters, Wpost and Wbase, are two
variants of the W parameter in Equation A4, which is the amount
of activation spreading from the step in the focus of attention to its
successors. Wpost is for the postinterruption trial and absorbs decay
of spreading activation during interruptions (Altmann & Trafton,
2015). Wbase is for baseline trials.

The fifth parameter, g, is the proportion of spreading activation
reaching a step that is passed on to that step’s successor, again in
Equation A4. Smaller values of g mean that less activation reaches
distant successors.

Model Equations

Here we describe the model equations—first those for prede-
cessors, then those for successors, and finally those that map
retrieval probabilities to sequence error probabilities.

Predecessor activation and retrieval probability. To select
the next step the system first retrieves a predecessor to use as a
prime. The system retrieves the most active predecessor and sim-
ply assumes it has retrieved pred1, which it usually has except
when pred2 has intruded.

Three equations jointly determine the retrieval probability of a
predecessor. Equation A1 determines a predecessor’s activation
level from its age. Equation A2 determines a predecessor’s age
from various timing parameters. Equation A3 maps activation
levels of the set of predecessors to the probability of retrieving any
one of them.

The activation of predd—the control code that governed perfor-
mance of the dth preceding trial—is given by

A(td) � �0.51n(td), (A1)

where td is the age of predd and 0.5 is the decay rate (Anderson &
Lebiere, 1998). The upper left panel of Figure A1 shows that A(td)
decreases without bound as d increases (to the left).

The lower left panel of Figure A1 shows the corresponding
retrieval probabilities (defined by Equation A3, below) for incor-

rect predecessors (predd � 1). The retrieval probability after long
versus very short interruptions differs substantially for pred2,
differs much less for pred3, and differs not at all for older prede-
cessors, which have no effective probability of intruding. Thus, as
we wrote in the body, interruption length affects error rates at
Offset �1 differently than it affects error rates at other offsets,
because interruption length affects episodic memory, and most
episodic memory errors involve retrieval of pred2.

td is determined by timing parameters that include average
response time for baseline trials R, the interruption duration I, and
the effective interruption duration E:

td ��dR � E for Position 1
dR for Position � 2 and Position � d
dR � I for Position � 2 and Position � d.

(A2)

The position factor that we introduce here is the serial position
of the current trial after the interruption. d, again, is the distance of
the predecessor from the present, measured in trials.

The first clause of Equation A2 applies to the postinterruption
trial (Position 1) and determines td for all predecessors of that trial.
For example, pred1 at this point is from the preinterruption trial, so
its age is R � E. pred2 is older by a trial, so its age is 2R � E.

The second and third clauses of Equation A2 apply to baseline
trials (Position � 2). The second clause determines td for all
postinterruption predecessors (Position � d) and the preinterrup-
tion predecessor (Position � d). For example, for Position 2, pred1

is from the postinterruption trial, and its age is simply R. pred2 is
from the preinterruption trial, and by assumption was rehearsed
during the interruption (as pred1, at that point). For tractability we
assume that rehearsal exactly offsets decay during the interruption,
so that for the rehearsed code the interruption in effect never
happened. Thus, the age of pred2 is now 2R. The third clause
determines td for predecessors preceding the preinterruption trial
(Position � d). For example, for Position 2, pred3 is from the
prepre-interruption trial, and its age is 3R � I, where 3R is the total
response time for 3 consecutive trials and I is the interruption
duration. By assumption, the code from the prepre-interruption
trial was not rehearsed and therefore decayed for the full I.

The activation levels of all predecessors affect the probability of
retrieving any one of them. The probability u(d) of retrieving the
dth predecessor is given by

u(d) � eA(td) � s

�i�1
D eA(ti) � s

, (A3)

where A is activation from Equation A1, D � 7 is the number of
steps in the procedure, and s � �6	⁄
, where 
 is the standard
deviation of activation noise (Anderson & Lebiere, 1998). This
equation normalizes the activation of a candidate retrieval target to
the total activation of all candidates, amplifying activation differ-
ences with exponentiation. The amplification is smaller with larger
values of s.

(Appendix continues)
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Successor activation and retrieval probability. After the
system retrieves a predecessor, it focuses on that step to prime
retrieval of that step’s successor—though this priming also spreads
to more distant successors. Two equations jointly determine the
retrieval probability of a successor. Equation A4 specifies the
initial amount of activation spreading from the source and the rate
of attenuation as it spreads, and allows a representation of decay of
spreading activation during interruptions. Equation A5, like Equa-
tion A3, maps activation levels to retrieval probabilities.

The activation spreading to succd is given by

B(d) � Wgd�1, (A4)

where W is the initial amount of activation spreading from the
source, g is the proportion of activation reaching one step that is
passed to the next, and d is the number of steps from the source to
succd, the dth most distant successor in the UNRAVEL sequence.
The formalism is taken from Anderson and Pirolli (1984). As
shown in the upper right panel of Figure A1, B(d) approaches
asymptote at 0 as d increases (to the right); 0 is the base level of
activation of the task sequence.

The lower right panel of Figure A1 shows the corresponding
retrieval probabilities (defined by Equation A5) for incorrect suc-
cessors (succd � 1). After long interruptions (solid line), all suc-
cessors have a measurable probability of intruding on succ1, be-
cause they maintained their base level activation as succ1 decayed.
This increase in the probability of all successors intruding accounts
for the gradual linear increase in errors at all offsets in Figure 4.

To represent decay of spreading activation, we estimate W
separately for the postinterruption trial (Wpost) and for baseline
trials (Wbase), allowing Wpost to absorb the effect of decay. The
underlying theoretical assumption is that the rate of decay at a step
is proportional to the amount of activation that has spread to that
step (Altmann & Trafton, 2015).

The probability v(d) of retrieving the dth successor is

v(d) � eB(d) � s

�i�1
D eB(i) � s

, (A5)

where B is from Equation A4 and D and s are as in Equation A3.
Predicted sequence error rates. The retrieved predecessor

and successor determine which step is selected for performance.
For example, pred1 and succ1 generate the correct next step—but
so do pred2 and succ2, as do all other pairs that represent canceling
retrieval errors. The joint probability of any path other than pred1

and succ1 is very small, so earlier we treated any retrieval other
than pred1 and succ1 as an error, but for completeness we include
all alternative paths in the model. Thus, the probability of selecting
the correct next step is a sum of probabilities,

pcorrect � �d�1
D u(d)v(d), (A6)

where here as earlier D � 7 so that each step nominally has a
chance to influence performance.

Similarly, the most probable path to an error at Offset �1 is
through pred2 and succ1, as we have discussed, but another path is
through pred3 and succ2, and yet another is through pred1 and
succ7. Generalizing this logic, the probability of an error at Offset
–n is

p�n � �d�1
D u[ f(n, d, D)]v(d) (A7)

and the probability of an error at Offset �n is

p�n � �d�1
D u(d)v[ f(n, d, D)], (A8)

where f�n, d, D� � 1 � ��d � 1 � n� mod D�. The values for p-3,
p-2, p-1, p�1, p�2, and p�3 are the theoretical error proportions at
offsets �3, �2, �1, �1, �2, and �3, respectively.

Procedures for Fitting and Evaluating the Model

We fit the model using maximum likelihood estimation based
on the binomial distribution,

Likelihood � 	nk 
pk(1 � p)n�k, (A9)

where, for a given cell of the experimental design, n is the actual
number of trials, k is the actual number of sequence errors, and p
is the error probability for that cell predicted by the model. We
used the Microsoft Excel Solver routine to estimate values for E,
s, Wpost, Wbase, and g that maximized the sum of log likelihoods
across the 36 cells formed by crossing the six levels of offset
(�3, �2, �1, �1, �2, �3) with six levels of position (1 through
6), where position is the serial position of a trial after an interrup-
tion (Position 1 being the postinterruption trial and Positions 2
through 6 being baseline trials). We substitute the position factor
for the trial type factor used in the body because the model is
constrained by the empirical error rate at each of these levels of
position.

We fit the model to the data from each participant individually,
generating theoretical values to code alongside that participant’s
empirical values. The means of the theoretical values across par-
ticipants are the lines in Figure 4 and also in Figure A2, which
shows a more comprehensive comparison of theoretical and em-
pirical values that includes baseline trials (averaged over Positions
2 through 6) as well as the postinterruption trial. Table A1 gives
mean parameter values for each interruption length. The mean
parameter values for the very short and long conditions were used
to generate the functions in Figure A1.

(Appendix continues)
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To evaluate the model’s goodness of fit we used an inferential test
developed by Altmann and Trafton (2015). The test augments the
empirical ANOVA design with an additional within-participants fac-
tor called fit, with levels empirical (participant data) and theoretical

(participant model values). An interaction of a contrast in the empir-
ical design with the fit factor indicates that the model cannot account
for that empirical effect. Altmann and Trafton (2015) found the test
powerful enough to detect fairly subtle model-data misfits.

(Appendix continues)

Figure A2. Sequence errors on the postinterruption trial and on baseline trials. Markers are empirical values,
error bars are 95% confidence intervals, and lines are model values.
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Table A2 shows the test applied to the present data. Columns 1
through 7 show results of a 4 (interruption length) � 6 (offset) � 6
(position) ANOVA on the empirical data. Columns 8 and 9 show
results of the goodness-of-fit test. Each F ratio in Column 9 is formed
from the effect term in Column 8 and the error term in Column 5. The
effect term represents the deviation of theoretical means from empir-
ical means for that empirical contrast. The error term is simply the
estimate of the empirical error variance; the model adds no variance
of its own, so pooling estimates across levels of the fit factor only
attenuates the error variance, the more so the better the fit. The F ratio
is significant if the deviation of theoretical means from empirical
means is large relative to the error variance in the data. No Fs in
Column 9 were greater than 1, so there is no basis to reject the model
on grounds that it failed to account for systematic variance attributable
to experimental factors.
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Table A1
Mean Parameter Values for the Model for Each Interruption
Length Condition

Interruption length

Free parameters
Bound

parameters

E s Wpost Wbase g R I

Very short 2.02 0.048 0.65 0.56 0.42 2.76 2.76
Short 4.19 0.052 0.39 0.50 0.32 2.74 13.12
Medium 4.47 0.052 0.32 0.47 0.34 2.63 22.02
Long 3.86 0.052 0.29 0.46 0.34 2.63 31.91

Note. Values for free parameters are estimated through model fitting: E
is in seconds, s is related by a transformation to units of activation (see
text), Wpost and Wbase are in units of activation, and g is dimensionless.
Values of bound parameters are bound by performance data: R is response
time averaged over Positions 2 through 6, and I is the interruption duration.
R and I are means of untrimmed participant means, in seconds.

Table A2
Analysis of Variance for Sequence Errors (Columns 1–7) and the Corresponding Model Goodness-of-Fit Test (Columns 8–9)

1 2 3 4 5 6 7 8 9

Contrast MSeffect MSerror dfeffect dferror F p

Contrast � Fit

MSeffect F

Interruption length (L) 89.45 8.34 3 396 10.73 .000 0.17 0.02
Position (P) 1012.73 3.81 5 1,980 265.60 .000 1.71 0.45
Offset (O) 595.00 3.14 5 1,980 189.59 .000 2.14 0.68
L � P 80.70 3.81 15 1,980 21.16 .000 0.72 0.19
L � O 6.79 3.14 15 1,980 2.16 .006 0.62 0.20
P � O 111.29 2.28 25 9,900 48.77 .000 1.20 0.53
L � P � O 6.85 2.28 75 9,900 3.00 .000 1.02 0.45
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