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Abstract— Learning to recognize new objects in real time
in unconstrained environments presents significant challenges
for robotic platforms. We present a meta-learning solution
to this problem as well as a registered image and events
dataset to facilitate work in this domain. Our solution uses
interactive motion to isolate the object, and motion-based
saliency (from events) to select relevant keypoints from a high-
resolution RGB image. Salient keypoints are then passed to a
meta-learner to classify the object type. We show that using
our interactive isolation and keypoint selection approach, we
outperform existing techniques by 6-20%.

I. INTRODUCTION

Imagine a robot being unpacked for the first time. The
robot’s pre-programmed range of skills will probably include
tasks it knows how to accomplish (e.g., vacuuming or
replacing a lightbulb), objects it can identify (e.g., a vacuum
or a lightbulb), and interaction techniques (e.g., social norms
of greeting or accepting instructions). All of these skills
are under active study by researchers in interactive task
learning [1], computational perception [2], and human robot
interaction [3].

A critically important skill is the ability to recognize
objects in new environments. Fortunately, computational
perception has improved a great deal in the last decade,
primarily due to deep networks and big data (e.g., ImageNet
[4]). Most of this work has focused on training deep networks
on millions of images [5], [6]. Frequently, the evaluation
criteria focuses on performing better than a previous best al-
gorithm on a specific dataset; this has lead to both qualitative
and quantitative improvements in computational perception
/ computer vision.

While big data has helped to improve performance, the
requirement of using big data can be a limitation. Current
perceptual systems require huge amounts of data (1000
samples per class is a common heuristic). Most interactive
robotics users will find this to be an unrealistic, burdensome
prerequisite. For practical use, a system must be able to learn
to recognize an object from very few instances – typically
five [7], [8].
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Learning from limited data has been a goal in object
recognition for quite some time. Although humans do this
effortlessly, we are only beginning to develop systems that
have this ability. A key insight that has facilitated this work
is that we need systems that can learn how to learn [9],
[10] (i.e., meta learning). Rather than training our system
to recognize a thousand classes, instead we provide it with
a number of training “episodes”, each of which contains a
small learning problem consisting of a few object classes
and a few examples from each object class. Over time, our
system learns ways that it can quickly and effectively learn
to recognize objects given limited training data.

Although this provides the ability to learn quickly, it
sometimes overemphasizes contextual cues as the meta-
learner does not attempt to isolate the object of interest. This
causes the meta learner to fail in rather predictable ways
when used interactively. Teaching our robot to recognize
objects involves providing objects with limited context, a
collaborator usually just holds the object up for the robot to
see [11]. During training episodes, the meta learner learns to
recognize the differences between images, and much of the
time these differences are not exclusively the objects them-
selves. Thus, as we will show, meta-learners are extremely
sensitive to (now irrelevant) contextual cues. To illustrate,
consider the case of a competitive meta learner (MetaOptNet
[12]) when given a task of recognizing 5 objects with 5
examples per object class. On the the miniImageNet dataset
[13] this is completed with a rather acceptable 80% accuracy.
On our proposed heldheld objects dataset, this accuracy drops
to 48%.

We propose to address this problem in two different
ways using a novel learning system called Salient Keypoints
for Interactive Meta-Learning (SKIML). We leverage meta-
learning [7], [8] that allows training with less data and does
not need extensive re-training time. We use interaction to
allow us to identify the portion of the scene that contains
a to-be-learned object, permitting us to remove irrelevant
details. Our interactive perceptual learning system allows a
human teacher to hold an object, verbally identify it, and
focus the robot’s attention to the object by wiggling it. A
dynamic vision sensor (DVS) camera captures the object
motion. DVS cameras have high throughput and dynamic
range which means that they can capture rapid motion even
when there is poor lighting. We use the motion in two ways.
First, this motion provides a means of focusing the attention
of the robot. We use motion to isolate object on a registered
camera where a standard image can be processed. Second,
we use visual saliency [14] to analyze the motion and provide
regions whose motion is salient. We use motion saliency to
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determine which regions of the the object to use as keypoints.
We train a meta-learner using the cropped image as well as
the regions around each salient motion keypoints.

The objective of our approach is to improve few shot
learning accuracy on handheld tools recognition. Using our
approach, we improve performance by 6% up to 20% on our
newly proposed shared attention tool dataset.

A. Contributions

• We propose a novel technique that we call Salient Key-
points for Interactive Meta-Learning (SKIML) for rec-
ognizing objects through interaction. Salient keypoints
isolate a region of interest by finding high saliency
regions when a user shows an object to the robot.

• We present a novel meta-learner that builds an object-
based representation based on both salient motion key-
points and a standard image.

• We show that our complete system is better suited for
interactive object learning than current meta-learning
approaches.

• We release the Shared Attention Tool Dataset – a
publicly available dataset for use by others interested
in interactive few-shot learning focused on human-robot
interaction (HRI) applications.1

II. RELATED WORK

A. Traditional Object Recognition and Datasets

Traditional object learning systems typically include two
distinct phases: a learning phase and an evaluation phase.
During the learning phase, a large amount of labeled object
data is collected. This data can be collected experimentally
(e.g., on a turntable or a platform; [15]) or naturalistically
(e.g., pictures from mobile phones; [16]). The recognition
process includes image segmentation and object classifi-
cation [4], [17]. A deep network is then trained to learn
important features that are useful to identify the object.
For a literature review of state-of-the-art object recognition
methods, we direct interested readers to [17]. However,
this approach does not extend to HRI where users have a
smaller dataset that may be specific to their needs. Thus, we
created the Shared Attention Tool Dataset that contains high-
resolution images of common tools found in most homes.

B. Interactive Perceptual Learning on a Robot Platform

As suggested above, much of the work on object recogni-
tion emphasizes methods for collecting and labeling data and
not on learning novel objects through interaction. There have
been several researchers, however, who have trained novel
objects using a robotics platform. Martinson [18] developed a
technique to learn novel objects by picking them up, labeling
them by entering that information into a script, and showing
the object to a mobile sensor. A bounding box was generated

1The dataset will be made available after organizational approval.
DISTRIBUTION STATEMENT A. Approved for public release: distri-

bution unlimited.

by finding the hand holding the object and then creating
possible bounding boxes around the hand. The object was
then placed on a surface to capture RGB-D images as the
person walks around the object to emulate BigBird [15]. The
user then placed the object on several other locations and,
critically, augmented the collected data with synthetic data.
They achieved a 99% precision and a 57% recall.

Narayanan et al. [11] asked users to show an MDS
robot a suite of objects and label them. The labeling was
accomplished via computer interface by the experimenter and
a deep network was trained on each user’s data and labels.
One consequence of this result was that performance was
better (approximately 75%) than when the robot did not show
how to present the object to the robot (approximately 60%).
We improve upon this work by dramatically shortening the
amount of time required to learn to recognize an object. We
also provide an improved method for isolating the object
of interest using motion from a DVS sensor, rather than
segmenting images based on the closest point to the sensor.

Azagra [19] used a very difficult, cluttered dataset to
learn and evaluate through incremental learning. They used
language, pointing, and explicit showing of approximately
20 objects. Their offline training/evaluation system achieved
an accuracy of approximately 18% when they performed au-
tomatic segmentation of the object. Their incremental online
system achieved an accuracy of approximately 13% when
they performed automatic segmentation of the object. Note
that while these numbers are not extremely high, their dataset
was extremely challenging. We demonstrate our approach
on a new dataset with 54 distinct objects organized into 12
general categories.

Pasquale et al. [20] used iCub to train a convolutional
neural network to recognize 28 objects (7 categories). iCub
was able to hold and track an object as it received a
verbal label from a nearby human. Their offline training and
evaluation across 4 days achieved an average accuracy of
70%. While our goals are similar, our approach is able to
learn new objects online.

All of these systems used a deep network approach
for learning, though their approach differed slightly (e.g.,
Narayanan et al. and Pasquale et al. fine-tuned AlexNet for
each participant; Martinson used a deep network to train
from scratch). Martinson, Narayanan et al., and Pasquale et
al. used offline training, and most used offline evaluation.
Critically, none of these systems (or any others that we know
of) used an online learning system capable of learning new
objects from people within interaction time.

Our proposed method differs from these in several ways,
the most prominent difference is that our approach learns
online, while all of these methods learn offline. Online
learning is especially difficult in cluttered environments and
when there are distractors available [17]. We will address this
problem through interaction and specifically through joint
attention.

Joint Attention A fundamental component of interaction
is joint attention. This occurs when two or more individuals
focus on the same object [21]. Joint attention between
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humans is typically verified visually, often through body lan-
guage and eye contact, but can also occur through gestures,
language, touch, or other modalities. Accomplishing joint
attention between a robot and a human, however, requires
deliberate effort to ensure the robot is attending to areas
or objects in the environment the human expects. Although
there are examples of robots that can follow or learn a human
partner’s gaze in order to establish joint attention [22], [23],
we chose instead to use a slightly different approach. In our
case, we use the human’s actions to direct the robot’s focus
to a specific location in space. To accomplish this, we use a
Focus of Attention module (discussed below).

Meta Learning
Meta-learning was originally proposed as a method to

improve the performance of few-shot learning by explicitly
teaching the network how to perform well with less data.
Vinyals et al. [10] was one of the first in this area to suggest
the concept of meta-learning. They propose MatchingNets,
a method where the features of the query samples are con-
trasted with features derived from a set of support samples.
Snell et al. [24] propose a different approach, ProtoNet,
where the training samples are instead used to learn a
prototype representative of the class as a whole. We use
ProtoNets as the basis of our approach, but in addition to
the image, the ProtoNet is also given small regions cropped
around motion salient keypoints. We further expand it to use
a support vector machine for object classes, rather than the
single prototype originally proposed.

Recent advances in meta-learning have extended this to
fine-tuneable networks [9]. Interventional few-shot learning
focuses on methods to improve domain transfer [25]. Chen
et al. [26] study the differences in using different backbone
architectures in an effort to determine an architecture better
suited for transfer learning. More recent work has begun
to focus on the problem of few-shot detection [27], [28],
but the accuracy of few-shot detection is much lower than
recognition and better performing approaches depend on off-
line learning approaches (fine-tuning).

Here, we show that good performance can be achieved
with shallower networks when given better images from
which to train and evaluate. Additionally, shallower networks
are a better fit for mobile robotics platforms as they typically
have very constrained GPU resources.

III. METHODOLOGY

A. Interaction

The interaction with the robotic system has been modeled
after the observations of natural object learning scenarios
(e.g., infants and novices learning new objects) [29]. In this
interaction scenario, the operator is teaching the robot a new
task sequence involving some set of tools that are unknown to
the robot. The operator must teach the tools to the robot first.
Each tool is visually presented to the robot along with its

DISTRIBUTION STATEMENT A. Approved for public release: distri-
bution unlimited.

verbal label (e.g.,“This is a screwdriver”). When presenting
the tool, the operator can utilize any of a number of shared
attention strategies, that is, methods to ensure the operator
and the robot are paying attention to the same thing in the
environment. For the purposes of this paper, we are only
focused on one strategy: wiggling the new object, though
other methods of focusing attention can be added to the
system at a later date.

B. System

The robotic system is broadly outlined in Figure 1. The
SCIPRR reconfigurable head [30] is equipped with an Ini-
vation DAVIS-346 DVS camera, a FLIR Grasshopper, and
microphones. The cameras are calibrated as discussed below.
These provide the raw sensory input to the first system which
deals exclusively with the interaction with the user. The
Focus of Attention Module is responsible for taking the raw
sensor outputs and finding the candidate object within the
scene. It then passes cropped and calibrated RGB and event
images to the second system to be learned.

Fig. 1. Simplified robotic system diagram. Here, we show that the focus
of attention module provides both images and DVS events to the learning
module, which is shown in more detail in Figure 2.

1) Focus of Attention Module: The Focus of Attention
Module is designed to handle multiple different styles of in-
teraction, specifically modes of drawing attention to a partic-
ular object in space. Using verbal commands to differentiate
between modes, the module can find objects that are between
two hands (Held Object Estimator, using OpenPose [31]),
being pointed at (Pointed Object Estimator, using OpenPose
and DVS-based motion detection), or being wiggled (Object
in Motion Estimator, using DVS-based motion detection).

C. Learning Module

Here, we describe our learning pipeline. The system
diagram is shown in Figure 2, with additional examples of
each step on this pipeline in Figure 3. Our calibrated sensors
provide both the visual image as well as the DVS events from
motion.

1) UNISAL and the Salient Motion Map: Wiggling the
object produces DVS motion events, which are then used to
both segment the object and locate salient motion keypoints.
A DVS motion event is captured as (x, y, t) where (x, y) is
the location of the event and t is the observed time interval.
The observed motion is captured by summing the observed
motion and computing a motion map M =

∑t+δt
i=t (x, y, i)

DISTRIBUTION STATEMENT A. Approved for public release: distri-
bution unlimited.
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Fig. 2. System flow diagram for the learning module, showing how the learning system uses input from the DVS events to learn representations for the
objects. Interaction into the system comes through motion observed by the DVS camera in the events image. The meta learner includes both the embedding
network and the support vector machine, as described in our methodology section.

where δt is set to a time interval of around 1 second. Figure
3, second column, shows different colors for positive and
negative event polarity, which shows a transition from dark to
light regions or light to dark regions, respectively. Note that
DVS cameras do not report frames, they report events. For
this reason, we are able to capture even very rapid wiggling
motions.

Given the motion map M , we hypothesize that compo-
nents of an object that would draw the attention a human eye
are good candidates to facilitate classification. Therefore, we
used saliency estimation [14], [32], [33], whose goal is to
train a deep network to predict visual saliency when given
with a large training set. The SALICON dataset annotates
images from the MSCOCO dataset with visual saliency,
collected by allowing users to “free view” images (e.g.,
viewing without any stated objective). We wish to compute
the visual saliency S(M) for our motion map. For this, we
use the UNISAL neural network recently proposed by Droste
et al. [14]. UNISAL models visual saliency on both image
and video data. Their results show that UNISAL achieves
state-of-the-art performance on the video datasets and is on
par with the state-of-the-art for the image datasets.

Figure 3 shows M in the 2nd column and S(M) in the
third column. Encouragingly, UNISAL predicts that noise in
the image will not draw the attention of the human observer.
It also predicts that regions with more motion will draw a
greater amount of attention.

We use the motion saliency map S(M) in two different
ways. First, by locating highly salient regions, we extract
a bounding box around the object shown by the human
instructor. We compute the bounding box by applying a small
threshold (in our work, we select S(M) > 50), although in
our observations our approach is not highly sensitive to this
threshold. As shown in the system diagram (Figure 2), we
crop around the salient motion and resize this to an 84× 84

image and use this as one of the images input (Xci) to the
meta-learner (discussed below).

Further improvements in accuracy can be realized by
examining S(M) to find regions where the attention is
locally maximum, which indicates that this is a region will
draw the attention of a human observer. The wiggle from the
human observer produces more motion at the extreme points
of the tool (typically, the handle and the end effector). In this
next step, we convert this to keypoints which can be used to
“fixate” upon. To locate keypoints, we fit a Gaussian Mixture
Model (GMM) to S(M), in order to estimate a mixture of
two Gaussians. The two located peaks are shown in the 4th
column of Figure 3, showing keypoints using a small green
circle. We crop a small region around each of these keypoints
and also use these to train our meta-learner.

To summarize, the meta learner is provided with three
images, the cropped, resized bounding box around the object
(Xci), as well as small regions cropped around each of the
keypoints (Xkp1, Xkp2). Note that the regions are cropped
around the center of each keypoint from the original 640×
480 image, which provides these images to the meta-learner
in greater detail.

2) Meta Learner: Meta learning uses a small support
set L = {(x1, y1), (x2, y2)...(xn, yn)} of N labeled training
images, where each xi ∈ RD is the input and y represents
the ground truth label. Given this, we wish to building an
embedding function fθ = RD → RM that computes an
embedding of the input values [24].

Our embedding function f is based on the architecture
suggested by [24], with 4 convolutional blocks each with a
3× 3 convolution, batch normalization, rectified linear norm
activation, and a 2×2 max pooling. Multiple salient regions
are combined with a 2 layer LSTM, which produces the final
embedding.

For input i, each of the three input images:
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[X(i)kp1, X(i)kp2, X(i)ci] are presented to the meta
learner, with the cropped keypoint images presented first
and the resized image presented last. This produces an
embedding representation RD.

We train using the approach suggested by Snell et al.
[24]. The meta-learner finds a “prototype” in the form of
the average embedding for each object class. This is done
by first computing the embedding for each training image,
with a final step to compute the average of all embeddings
in that class, resulting in a single prototype representing that
class. The class of query images is predicted by finding
the encoding that is closest, with the meta-learner trained
to minimize cross-entropy loss.

Rather than using the average embedding for each class,
instead we use a support vector machine (SVM) to learn a
one-vs-one classification for each class (SVC). This idea is
inspired by MetaOptNets [12], but we choose to do this after
training while still retaining the smaller network architecture,
as this is better suited for most mobile robotics platforms.

We build our meta-learner by pre-training on the Mini-
ImageNet dataset [13], using the parameter suggested by
[24].

D. Sensors and Calibration

The DAVIS-346 camera simultaneously produces both
an events image and a color image. Although the color
image is useful, it is generally very low resolution and the
image quality is poorly suited for recognizing objects. For
that reason, we calibrated the DAVIS-346 with the FLIR
Grasshopper. Calibration uses the standard ROS calibrated
camera pipeline, slightly modified to accommodate sensors
of different resolutions.

E. Shared Attention Tool Dataset

Interactions with robots can take substantial time, espe-
cially for repeated online learning of new objects. For the
purposes of this particular problem, we have abstracted away
portions of the interaction (e.g. speech), resulting in a hybrid
image dataset more suitable for automated analyses. We
created the Shared Attention Tool dataset 2 which contains
high-resolution images (i.e., 640x480) of common tools
representative of those found within most homes.

The dataset includes a total of 54 distinct objects (tools),
falling into one of twelve classes, with at least four instances
in each class. For each tool, eight different poses were
collected under varying conditions of presenter appearance,
lighting, and background. For each sample, two images were
acquired, an RGB image from the color camera before
movement and a consolidated event image of the wiggle
motion from the DVS camera.

DISTRIBUTION STATEMENT A. Approved for public release: distri-
bution unlimited.

2available after institutional approval

1) Consolidated Event Image: DVS cameras are high-
speed devices that capture changes in infrared luminosity.
Instead of returning a single image frame at a fixed update
rate, the camera provides asynchronous events which report
changes to per-pixel luminosity. To support processing with
traditional frame-based image processing pipelines, DVS
event data can be binned over time to produce consolidated
event images. For the purposes of this dataset, event data was
consolidated over 500ms, effectively capturing the movement
of the tool during enrollment.

2) Tool Classes: Twelve tool classes were selected based
on common tools. Each instance within each class is visually
distinct from the other (i.e., avoiding classes like socket
wrench which differ only in size). Some classes have a
high degree of similarity both in structure and function (e.g.,
hammer and mallet). Others classes may only differ based
upon the end effector (e.g., wire cutters and pliers). The
granularity of the classes was determined largely by what
features are resolvable at the given sensor resolution. For ex-
ample, screwdriver encompasses both flat and phillips heads
because they are identical at 640x480. The twelve classes are:
adjustable wrench, box cutters, channel lock pliers, hammer,
mallet, pliers, screwdriver, square, tape measurer, tin snips,
wire cutters and wrench.

IV. EXPERIMENTAL RESULTS

We evaluate our approach on the Shared Attention Tool
dataset described earlier. In our experiment, we evaluate
performance on four different interactive teaching and eval-
uation scenarios. In the first two, a human teaches a robot to
recognize five randomly selected tool classes, whereas in the
second a human teaches a robot to recognize ten randomly
selected tool classes. In each experiment we provide a
single example of each (i.e., 5-way or 10-way, 1-shot). A
second evaluation analyzes performance when providing five
examples of each tool class (i.e., 5-way or 10-way, 5-shot).

The experiment is performed randomly 2000 times. We
find the object using the focus of attention module and
classify using the MetaLearner (see Figure 1). In practice,
object labels would be provided by the speech manager, but
when collecting the shared attention tool dataset we entered
these labels manually to encourage image recognition.

In our experiment, objects are randomly sampled from
the 12 available tool categories each time. Support (training)
images are selected randomly without replacement; 15 query
images per class are also selected randomly without replace-
ment. We report the average accuracy and a 95% confidence
interval, shown in table I.

To evaluate the accuracy of our approach, we com-
pare against two popular approaches: ProtoNets [24] and
MetaOptNet [12]. Both results were computed using the ref-
erence implementation provided by the authors of MetaOpt-
Net 3. The focus of attention module was not used for

DISTRIBUTION STATEMENT A. Approved for public release: distri-
bution unlimited.

3https://github.com/kjunelee/MetaOptNet
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Fig. 3. Our processing pipeline, from left to right: the image of various tools as captured in a cluttered environment; the DVS image capturing events
occuring over approximately 1 second; the motion saliency image showing a heatmap of which regions attract attention; keypoints selected

either approach. We used their approach as suggested by
the authors.

As Table I shows, the Shared Attention Tool dataset is
quite challenging. The 5-way, 5-shot data represents what
may be a common scenario where a 5 tools are needed to
perform a task and an instructor provides 5 different images
of each. Protonet and SKIML with only the focus of attention
performs the worst, at approximately 40%. MetaOptNet
provides an improvement, operating at approximately 50%
accuracy. SKIML with both the focus of attention and
keypoints performs the best at 63% accuracy.

One trend that is evident in this experiment is that the
performance difference between SKIML and MetOptNet
grows with additional support (training images). With 5-
way, 1-shot, SKIML outperforms MetaOptNet by 6.5%; with
5-way, 5-shot SKIML outperforms MetaOptNet by a much
wider margin (about 15%). This trend is also present with the
10-way experiment. Here, SKIML outperforms MetaOptNet
by 10% with 1 training image and by over 20% with 5
training images. This trend is encouraging and suggests that
both SKIML, the focus of attention and keypoints are making
good use of the limited amount of training data.

We also note the importance of using salient motion
keypoints. SKIML without keypoints somewhat comparably

to ProtoNets and substantially worse than MetaOptNet. How-
ever, once keypoints are added to the system architecture,
SKIML outperforms existing approaches by 10-20%.

Finally, our approach can quickly learn new objects.
Training the meta-learner and support vector machines takes
on average 0.15 seconds per batch, which we evaluate on a
5-way, 5-shot scenario. GMM adds an additional 0.15 to 0.2
seconds per image. In sum, this means we can learn a new
object in less than 0.35 seconds. Both training and evaluation
are within a reasonable interaction time, which achieves our
stated goal of interactive object learning.

Like many recent meta-learners, MetaOptNet uses the
deeper ResNet-12 architecture as some [26] have shown that
these have good generalization properties. They do present
a trade-off for SWAP constrained robotics platforms, which
may not have the GPU resources to run (possibly several)
deep networks. We designed SKIML to work with limited
GPU resources typically available on mobile platforms,
which is why it is based on the much smaller ProtoNet
architecture.
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TABLE I
ACCURACY RESULTS FOR PERFORMANCE EVALUATION. ALL RESULTS ARE PRESENTED WITH 95% CONFIDENCE INTERVALS.

Classes Support MetaOptNet ProtoNet SKIML SKIML
Focus of Attention Focus of Attention

and Keypoints
5-way 5-shot 48.21 ± 0.67% 35.35 ± 0.43% 39.37 ± 0.34% 63.19 ± 1.00%
5-way 1-shot 29.54 ± 0.60% 28.76 ± 0.38% 28.20 ± 0.28% 35.09 ± 0.81%

10-way 5-shot 36.65 ± 0.41% 23.23 ± 0.25% 26.45 ± 0.17% 57.27 ± 0.68%
10-way 1-shot 20.08 ± 0.37% 19.56 ± 0.24% 17.31 ± 0.16% 30.37 ± 0.63%

V. DISCUSSION

To summarize, we present an approach that permits us to
learn new objects using only a few examples. Our approach
can learn new objects and can recognize objects quickly and
does not require a lengthy or cumbersome offline learning
process. Interaction is key in our approach as this allows us
to both segment the object and to identify keypoints.

We are hopeful that with further study we can continue
to reduce the number of training images required. This
experiment represents the typical performance that might be
achieved if a person were to randomly select a few tools
to meta-train the robot for immediate recognition. We have
shown that performance increases with additional examples.
So, although the performance of 10-way, 5-shot is preferable,
it requires providing 50 different images to the robot for
training. Future work should continue to expand on this idea
on how to do more with less training data.

A meta learner could be one piece of a larger system
designed to robustly recognize a wide number of objects.
Our meta-learner can be used for rapid learning with an
occasional error, which then provides data to train a larger
network whose training would take more time (e.g., over
night to build a more robust and accurate network). Thus,
over time we continually provide a method to both learn
and to improve performance. It may be possible to use the
learning experiences from different robots to build an even
more robust network.

Finally, it’s important to relate our problem (object recog-
nition) to the detection problem which both identifies the
object and provides a bounding rectangle. We provide a
solution on how to recognize handheld objects. For detection,
one approach may be to use the focus of attention module
to build a region of interest, which could then be used
to train a region proposal network. By combining motion,
pointing, body pose, etc. we could develop multiple ways to
generate these regions of interest which could then be used
to interactively train an object detector in the style of the
R-CNN two stream object detectors.

Finally, a note on our dataset. We provide a large dataset
that has registered motion and visible images. Our hope is
that this dataset can be used in the future to study the problem
of handheld object recognition. To the best of our knowledge,
this is the largest existing dataset that contains interaction and
registered images from a visible and DVS camera.
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