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a b s t r a c t

We examined effects of adding brief (1 second) lags between trials in a task designed to study errors in
interrupted sequential performance. These randomly occurring lags could act as short breaks and
improve performance or as short interruptions and impair performance. The lags improved placekeeping
accuracy, and to interpret this effect we developed a cognitive model of placekeeping operations, which
accounts for the effect in terms of the lag making memory for recent performance more distinct. Self-
report data suggest that rehearsal was the dominant strategy for maintaining placekeeping information
during interruptions, and we incorporate a rehearsal mechanism in the model. To evaluate the model we
developed a simple new goodness-of-fit test based on analysis of variance that offers an inferential basis
for rejecting models that do not accommodate effects of experimental manipulations.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Background

Many everyday tasks have two important characteristics that
interact to elevate the chances of a performance error. One is
sequential constraints: A set of steps has to be performed in some
prescribed order and an error occurs when a step is skipped or
repeated. For example, in the medical domain, one might forget to
record a dose of medication in a log (a skipped step), which could
then lead to administering a second dose (a repeated step). Sequen-
tial constraints are common in medicine, equipment maintenance,
computer programming and technical support, data analysis, legal
analysis, accounting, and many other home and workplace environ-
ments. Sequential constraints also play a role in such basic cognitive
processes as language production, event counting, serial recall, and
problem solving. To perform correctly under sequential constraints,
the cognitive system has to keep track of where it is in the sequence
and select the correct next step when one step is complete, a process
we refer to as placekeeping.

The second characteristic is the possibility of interruption: In the
middle of a task the phone might ring, an email might arrive, or a
glitch or subgoal of some kind might arise in the primary task.

Experience suggests that interruptions like this often lead to “where
was I?” moments afterwards, and in fact interruptions generate
substantial performance costs at the point where the interrupted
task is resumed (e.g., Altmann and Trafton, 2007; Hodgetts and
Jones, 2006; Monk et al., 2008).

That said, errors in sequential performance can be a challenge
to study, both in general and after interruptions, because they are
relatively infrequent in most tasks that it makes sense to have
people perform. In routine procedures like making coffee, for
example, error rates in one study reached only 4% even in the
condition where interruptions were timed to be most disruptive
(Botvinick and Bylsma, 2005). To obtain enough errors to analyze,
researchers have variously studied neurological patients (Cooper
et al., 2005) and used diary methods to expand the temporal
window during which errors can occur (Reason, 1990). In labora-
tory tasks, a common approach is to structure the task environ-
ment to increase memory load. This can be done by including
“post-completion” steps (Li et al., 2008), which are difficult to
remember to begin with (Byrne and Bovair, 1997), or by including
an ongoing task that makes it easy to forget to return to the
interrupted task (Dodhia and Dismukes, 2009). Perhaps the most
common device is to eliminate any cues in the task display that
could tell participants where they were in the task sequence
(e.g., Brumby et al., 2013; Gray, 2000; Trafton et al., 2011).

In recent work we developed a new task to study errors in
interrupted sequential performance (Altmann et al., 2014). As in
other interruption tasks there are no external placekeeping cues,
but we also designed the stimulus materials and decision rules to
generate enough perceptual and cognitive load that placekeeping

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ijhcs

Int. J. Human-Computer Studies

http://dx.doi.org/10.1016/j.ijhcs.2014.12.007
1071-5819/& 2014 Elsevier Ltd. All rights reserved.

☆This research was supported by grants from the Office of Naval Research,
N000140910093 and N000141310247 to the first author and N0001412RX20082
and N0001411WX30014 to the second author.

E-mail addresses: ema@msu.edu (E.M. Altmann),
greg.trafton@nrl.navy.mil (J.G. Trafton).

Int. J. Human-Computer Studies 79 (2015) 51–65

www.sciencedirect.com/science/journal/10715819
www.elsevier.com/locate/ijhcs
http://dx.doi.org/10.1016/j.ijhcs.2014.12.007
http://dx.doi.org/10.1016/j.ijhcs.2014.12.007
http://dx.doi.org/10.1016/j.ijhcs.2014.12.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhcs.2014.12.007&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhcs.2014.12.007&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhcs.2014.12.007&domain=pdf
mailto:ema@msu.edu
mailto:greg.trafton@nrl.navy.mil
http://dx.doi.org/10.1016/j.ijhcs.2014.12.007


operations have to compete with task steps for system cycles, and
to generate enough variability from trial to trial that processing
does not become routine. The task is also continuous, producing
many opportunities for error and many opportunities to interrupt
participants between steps of the primary task.

The error data generated by this task are rich enough to be
analyzed as a function of multiple experimental factors and inter-
actions (Altmann et al., 2014). For example, interruption effects are
substantial, but there are also enough errors on trials not preceded
by interruptions to shed some light on placekeeping under baseline
conditions. Errors also form gradients as a function of the “offset” of
the incorrect step from the correct step within the sequence, and
the shapes of these gradients interact with interruption effects. All
told, the empirical patterns are complex enough to provide strong
constraints on a theory of the underlying mechanisms.

1.2. Present study

In the present study we address an interrelated set of applied,
theoretical, and methodological goals concerning interrupted
sequential performance. The applied question is whether slowing
people down a little can improve placekeeping accuracy. There is
considerable evidence that people can trade speed for accuracy
strategically (e.g., Wickelgren, 1977), and there is evidence from
interruptions research in particular that linking errors to a high
time cost improves accuracy (Brumby et al., 2013). Of interest here
is whether a lower bound on the time between events—not an
upper bound on time to respond, as in deadline procedures, but a
brief lockout period in which there is no processing to be done—
has the side effect of improving accuracy. To address the question
we added brief (1 second) lags randomly between trials of our
task, and compared performance on trials preceded by a lag with
trials preceded immediately by another trial.

We also wanted to investigate rehearsal as a placekeeping strategy
during interruptions. Rehearsal is a core strategy in memory proce-
dures (e.g., Baddeley et al., 1975; Reitman,1974), but beyond an earlier
study of ours (Trafton et al., 2003) there seems to be little research
evaluating the empirical prevalence of rehearsal in context of task
interruption. Here we include a self-report measure asking partici-
pants to indicate, after the experimental session, if they used any
strategies to keep their place in the interrupted task.

Our theoretical goal is to develop a cognitive model of place-
keeping mechanisms that explains the effect of brief lags and the
role for rehearsal if we find evidence for it, and that accounts for the
complex empirical patterns in data from our task more generally. As
we suggested above, placekeeping seems to be a general capability
expressed in many different tasks, so such a model could inform our
understanding of errors in many different contexts.

The basic theoretical premise in our model is that placekeeping
involves two interacting memory systems, one that stores episodic
information about what steps were recently performed, and ano-
ther that stores a long-term associative representation of the task
sequence. When the cognitive system has finished performing one
step in a sequence, it selects the next step by first remembering
what step it just performed, then using that memory to index into
the associative representation of the task sequence to find that
step's successor. Skipped or repeated steps arise from errors in
these two retrieval operations.

In context of this basic theoretical framework, several cognitive
mechanisms could lead to improved accuracy after brief lags, each
by sharpening memory for the most recently performed step and
thereby improving accuracy in looking up the next step. Cowan
(1999) proposed that an item does not decay as long as it remains
in the focus of attention. One possible illustration of this mechan-
ism is that participants in discrimination learning tasks hold
tightly to their most recent hypothesis over a long series of trials

if given no feedback to update it (Frankel et al., 1970). In context of
our lag condition, if information about the most recently per-
formed step remains in the focus of attention during the lag, then
it will not decay—even as information about earlier steps that is
not in the focus of attention does decay. Thus, after a lag, the most
recently performed step will be more active in memory in relation
to earlier steps, leading to more accurate selection of the next step.

Another mechanism is a “strengthening” process that has played a
role in previous models of goal-directed performance (Altmann and
Gray, 2008; Altmann and Trafton, 2002; Trafton et al., 2011). Strength-
ening hypothetically takes some time but could be deployed during a
brief temporal lag to maintain the activation of relevant control
information. A related construct is the attentional refresh process
found in some models of working memory (Barrouillet et al., 2004;
Oberauer and Lewandowsky, 2011). Strengthening and attentional
refreshing are more active and strategic whereas Cowan's (1999)
mechanism is more passive and structural, but each mechanism
points to the same outcome, which is improved accuracy after a
brief lag.

There is also some reason to expect the opposite outcome. In
previous work with our task, interruptions as brief as 2.7 seconds
reduced accuracy (Altmann et al., 2014), and 1 second is not that
much shorter than 2.7 seconds. Moreover, there is evidence that
unpredictable onset of events impairs placekeeping. Using an event-
counting task, Carlson and Cassenti (2004) found higher error rates
when the timing between event onsets was random than when it
was rhythmic, for a given average time between events. In our task, if
placekeeping operations are triggered by completion of a step, then
an unpredictable lag between that step and the next could increase
the chance of an anticipatory error. In this case a successful model
would have to spell out the timing and coordination of the under-
lying control operations in detail.

Finally, our methodological goal is to develop and evaluate a
simple method for testing whether a model adequately accounts
for effects of experimental manipulations. The method involves
fitting the model to the data from each individual participant, to
generate a distribution of model-data residuals across participants
for each cell of the experimental design. If these distributions
cluster around zero in all cells of the design, this would indicate
that the model is able to track all the experimental effects. If the
distributions differ significantly from zero in at least some cells,
this would indicate that the model was unable to track a specific
experimental main effect or interaction—the conditions of which
should help us identify the underlying theoretical problem. The
decision rule for testing model-data residuals comprises a set of F
ratios derived in part from the analysis of variance (ANOVA)
applied to the empirical data.

In sum, our goals in this study are as follows. Empirically, we
would like to investigate the effect of brief lags between trials that
could function either as short breaks that help performance or as
short interruptions that hinder it. We would also like to examine
the role of rehearsal as a strategy for maintaining placekeeping
information during interruptions. At a theoretical level, we would
like to develop a cognitive model of placekeeping, focusing in this
study on explaining effects of brief lags and rehearsal. At a
methodological level, we would like to demonstrate a simple
procedure for testing model fit and inferentially rejecting models
that include incorrect assumptions.

In the remaining sections we present the experiment (Section
2), then describe the model (Section 3), and then describe our
goodness-of-fit test and apply it to different model versions
(Section 4). In the General Discussion (Section 5) we discuss the
external validity of our task, relate our goodness-of-fit test to
Bayesian methods, and discuss limitations of our modeling
approach. In the Appendix we describe the model mathematics
and assumptions in detail.
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2. Experiment

2.1. Overview of experimental task and design

Here we describe key characteristics of the task (first reported
by Altmann et al., 2014) and describe the design for the experi-
ment we report here. Remaining details about task materials and
procedure are given in Section 2.2 describing the method.

Participants perform a sequence of seven different forced-choice
subtasks, or steps, in a prescribed order, and start the sequence over
again when they reach the end. To make the sequence itself easy to
remember, the prescribed order of steps is defined by an acronym—

the word UNRAVEL—with each letter of the acronym representing a
mnemonic for one of the seven choice rules. Participants cycle
through the UNRAVEL sequence about 45 times in an experimental
session, so there are about 45�7¼315 trials per session, where a
trial is a performed step. After every sixth trial on average,
performance is interrupted by a simple typing task in which a
randomized letter sequence is presented visually and the partici-
pant has to type the sequence correctly into a box.

Fig. 1a shows two examples of the kind of stimulus presented
to the participant on each UNRAVEL trial. Each stimulus contains a
randomly selected letter and a randomly selected digit. One
character or the other has a randomly selected font style (under-
line or italics), one character or the other has a randomly selected
color (red or yellow), and one character or the other is randomly
placed outside the gray outline box (above or below). The box

itself is a fixture that appears in the same location on every trial. A
new stimulus is generated for each trial.

Fig. 1b shows the choice rules for each step. The choice for the
U step is whether the font style in the stimulus is underline or
italic; for the N step is whether the letter is near to or far from the
start of the alphabet (the candidate letters are A, B, U, and X); for
the R step is whether the color is red or yellow; for the A step is
whether the character outside the box is above or below; for the V
step is whether the letter is a vowel or a consonant; for the E step
is whether the digit is even or odd; and for the L step is whether
the digit is less than or more than 5 (the candidate digits exclude
5). In each case, the letter for the step mnemonically identifies one
of the two candidate responses— u for underline, n for near to, r
for red, a for above, v for vowel, e for even, and l for less-than.
There are 14 candidate responses, each of which maps to one step,
so from any actual response we can identify which step the
participant thought was correct on that trial and can therefore
code sequence errors. The stimulus is constructed such that any
choice rule can be applied on any trial, so information about which
step is correct to perform on the current trial has to be maintained
in memory.

The main measure of interest is the frequency of sequence errors
on UNRAVEL trials. A sequence error occurs when the participant
skips or repeats one or more steps of the sequence. A sequence
error is coded with respect to the previous trial. For example, if on
three successive trials the participant performs U, R, and A,
respectively, the R would represent a sequence error because the

Fig. 1. (a) Two sample stimuli for the UNRAVEL task (the 9 is red and the X is yellow). (b) Response mappings for the UNRAVEL task, and responses for the two sample stimuli
in (a). (c) Sample stimulus for the interrupting task, after the participant has started to type the “code”.
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participant skipped N, but the A would represent correct perfor-
mance because A follows R in the sequence.

Fig. 1c shows a sample interruption stimulus. There is a string of
14 letters, which the participant is in the middle of typing. After
typing all 14 the participant presses the Return key and a second set
is presented. After typing the second set of 14 the participant
presses Return again and that ends the interruption. If a string is
incorrect when the participant presses Return, the box is emptied
and the participant must type the string again. The 14 letters are a
random permutation of the 14 candidate responses for the UNRA-
VEL task (see Fig. 1b), the aim being to interfere with participants’
ability to use the keyboard as external memory to remember their
place in the UNRAVEL sequence.

An interruption occurs every six trials, on average. The number of
trials between one interruption and the next is determined by
summing two terms: a constant 3 and a sample from an exponential
distribution with mean 3. Because of the exponential term, there is a
flat hazard function for interruption occurrence after the third trial, so
the timing of interruption occurrence is unpredictable. Because the
UNRAVEL sequence has seven steps, the average of six trials between
interruptions means that across the experimental session interrup-
tions are evenly distributed across the steps of the task sequence.

The experimental manipulation in the present study involves the
timing of events. After a trial there is a .5 probability of a 1 second lag
occurring during which the computer monitor goes blank and no
task-related processing is called for. After the lag, the next event—the
next UNRAVEL trial, or an interruption—occurs as it usually would.
The lag condition includes trials preceded by a lag, and, in the case of
trials preceded by interruptions, those where the interruption was
preceded by a lag. The nolag condition includes all other trials.

The experimental design is 2 (timing) � 6 (position) � 6
(offset), with all factors within participants. The factor timing (lag,
nolag) indicates whether there is a 1 second lag before a trial (lag)
or not (nolag). The factor position (1–6) is the serial position of the
trial after the interruption. (Every run of trials after an interruption
has positions 1, 2, and 3, because of the constant 3 we referred to
above, but for positions 4 and beyond the number of observations
drops off sharply because of the exponential term, so we stop at
position 6.) Finally, the factor offset (�3, �2, �1, þ1, þ2, þ3) is
the distance, in steps, of a performed step from the correct step
when a sequence error occurs. For example, after an R trial, the
correct next step is A, and if the step performed instead is U, N, R, V,
E, or L, this is a �3, �2, �1, þ1, þ2, or þ3 error, respectively.

2.2. Method

2.2.1. Participants
Participants were members of the Michigan State University

community, who received either credit toward a course require-
ment or $10. Data from 150 participants were included in the
study. Data from an additional eight participants were excluded
because the participant's accuracy in each case did not meet a
threshold, as described in Section 2.2.3.

2.2.2. Materials
In Section 2.1 we gave an overview of the experimental task;

here we give a more formal definition of how the stimulus is
constructed on each trial. For reference, Fig. 1a shows two sample
stimuli. Each stimulus has five attributes each with four candidate
values (in parentheses): letter (A, B, U, X), digit (1, 2, 8, 9), font style
(left-underline, left-italic, right-underline, right-italic), color (left-
red, left-yellow, right-red, right-yellow), and height (left-above, left-
below, right-above, right-below). The “left” and “right” elements of
the candidate values for font style, color, and height refer to the left
and right character positions, and the “above” and “below”

elements are relative to the box, which is a fixed feature of the
stimulus. On a given trial, the left-right order of the letter and digit
attributes is first randomly determined. Then, for each attribute,
one value from the set of four candidates is randomly sampled,
subject to the constraint that a value cannot repeat between trials.

2.2.3. Procedure
Participants were tested individually in sessions lasting about

45 minutes. A session began with the participant being introduced
to each step of the UNRAVEL step sequence. The introduction
emphasized the acronym, showing how the choice rule for each
step in turn corresponded to a constituent letter. Once all the steps
had been introduced, a screen appeared showing the letters
spelling out the word and summarizing the choice rules for each
step (essentially Fig. 1b). After this, to ensure that participants
understood both the choice rules and the sequential structure of
the task, the computer administered 16 practice trials during
which it required the participant to make the correct response
on each trial before the participant could move on. This 16-trial
sequence was interrupted twice, to illustrate for participants how
they should pick up after an interruption where they had left off.
The experimenter remained present during this period to provide
answers if necessary. A sheet of paper with the choice rules for the
UNRAVEL sequence remained visible to the side of the computer
throughout the session.

In preparation for the experimental phase of the session,
participants were reminded to “please try to keep your place in
the UNRAVEL sequence,” and to “please try to pick up in the
sequence where you left off” after an interruption.

The experimental phase consisted of 4 blocks, each with 12
interruptions and thus about 13�6¼78 trials (there were 13 runs
of trials per block because there was one run before the first
interruption). During this phase the computer accepted any of the
14 candidate responses in Fig. 1b as the response for a trial. No
feedback was given after individual trials about whether the response
was correct or not. After each trial, there was a 50% chance of a lag
occurring.

After each block the participant was given his or her score,
computed as the percentage of trials in that block for which the
step and response were both correct. If the score was above 90%
the participant was asked to go faster. If the score was below 70%
the participant was asked to be more accurate and that block was
excluded from analysis (2 cases). A participant was replaced if he
or she scored below 70% on two or more blocks (8 cases). We also
checked that a participant's accuracy on the post-interruption trial
was significantly above chance; no participant failed only this
additional test.

At the end of the experimental session, the experimenter asked
the participant, “When you were interrupted by the license codes,
did you use any particular strategy or technique to remember
where you were in the UNRAVEL sequence?” (The interruption
stimuli had been described to participants in the beginning as
being “kind of like software license codes.”) The data are the
experimenter's written summaries of each participant's response.
The experimenter was an undergraduate research assistant naive
to our theoretical assumptions.

2.3. Results

All our data are posted as supplementary materials at msu.edu/
�ema/brieflags.

2.3.1. Errors
The top panel of Fig. 2 shows sequence errors separated by

timing (lines) and position (abscissa) and averaged over the offset
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factor. The effects of interruption were isolated to position 1, and
on this basis we consider positions 2 and later as baseline trials. For
symmetry we often refer to the position 1 trial as the post-
interruption trial.

Fig. 3 shows sequence errors separated by baseline versus post-
interruption (empty vs. filled markers) as well as timing (panels)
and offset (abscissa). The markers represent data values, and the
lines (dot-dashed, dashed, and solid) represent the best-fitting
theoretical values produced by different models we discuss later.

We examined the error data with a 2 (timing)�6 (position)�6
(offset) within-participants ANOVA, the results of which appear in
Table 1. There was a main effect of timing, with the overall error
rate in the lag condition (M¼0.525%, SE¼0.038) lower than in the
nolag condition (M¼0.610%, SE¼0.042). Timing did not interact
significantly with the other factors. There were also main effects of
position and offset. The position effect is simply that error rates
were higher on the post-interruption trial than on baseline trials.
The offset effect, evident in Fig. 3, reflects the decrease in error rate
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Table 1
Omnibus Analysis of Variance of Sequence Error Data from the Experiment.

Contrast dfeffect dferror MSeffect MSerror F p η2p

Timing (T) 1 149 1.95E-03 2.94E-04 6.6 .011n .043
Position (P) 5 745 8.88E-02 7.01E-04 126.6 .000n .459
Offset (O) 5 745 3.58E-02 5.00E-04 71.7 .000n .325
T�P 5 745 4.56E-04 2.81E-04 1.6 .152 .011
T�O 5 745 4.00E-04 3.13E-04 1.3 .271 .009
P�O 25 3725 9.84E-03 3.62E-04 27.2 .000n .154
T�P�O 25 3725 4.41E-04 3.21E-04 1.4 .101 .009

n p o .05.
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with increase in offset from the correct step. Finally, there was a
position� offset interaction, also evident in Fig. 3, which reflects
the larger difference between post-interruption and baseline error
rates at offsets �1 and þ1 than at offsets further from the
correct step.

2.3.2. Response latencies
The bottom panel of Fig. 2 shows response latencies separated

by timing (lines) and position (abscissa). The data are means of
participant medians on correct trials. Interruption effects were
mainly local to position 1, as for errors.

We examined the latency data with a 2 (timing)�6 (position)
ANOVA. There was a main effect of timing, F(1, 149)¼254.5,
po .001, η2p¼ .631, with latencies faster in the lag condition
(M¼2.075 s, SE¼0.036) than in the nolag condition (M¼2.320 s,
SE¼0.033). There was also a main effect of position, F(1, 5)¼102.3,
po .001, η2p¼ .407, and a Timing� Position interaction, F(5, 745)¼
8.4, po .001, η2p¼ .053. The interaction reflects the absence of a
timing effect on position 1, t(149)¼1.2, p¼ .217. There, the lag before
trials in the lag condition occurs before the interruption and is
therefore temporally distal, which may have attenuated its effects.

Interruption duration was M¼20.424 seconds (SE¼0.504); this
is the mean of participant medians taken across all 48 interruptions.

2.3.3. Self-reported strategy use
In the strategy self-reports we collected at the end of the session,

we coded a response as indicating a rehearsal strategy if it made
reference to any form of the word “repeat” or to saying (or singing)
something out loud. According to this rubric, most participants used
rehearsal—125 of 150, or 83%. To be conservative, we did not code
rehearsal if a response made reference only to “remembering” a
step or to use of “mnemonic devices,” as these characterizations
could have indicated some other strategy.

We coded the 125 rehearsal responses on two additional
dimensions. One was whether the rehearsed target was the step
performed immediately before the interruption (cases that referred
to “last” or “previous”) or the step to be performed after the
interruption (cases that referred to “next”). Of the 125 rehearsal
cases, 54 referred to the pre-interruption step, 65 referred to the
post-interruption step, and 6 referred to rehearsing both steps at
different times.

The second dimension was whether the target of rehearsal was
the step itself or some other, derived code. Of the 125 rehearsal
cases, 115 referred to the step itself. Of the remaining 10 cases,
8 made reference to numbering or otherwise identifying the
position of steps in the sequence and rehearsing the number or
position rather than the step itself.

2.4. Discussion

Trials preceded by a lag were performed more accurately than
trials that were not. The effect was small (0.085%), but it was
significant, so the results suggest that in a task environment with
especially costly errors, one approach to improving performance is
to slow people down with a brief, forced pause between events.
Response time decreased by about 300 msec after lags, which was
not enough to offset the lag itself, so the net effect of a lag was to
slow performance.

One open question is whether lags would have the same effect
if their frequency or predictability were different. If the mechan-
isms that take advantage of brief lags are under strategic control,
then lags might be more effective if they occur predictably after
every response and less effective if they are rare. For example,
there is evidence from the task-switching domain that the sys-
tem's propensity to make use of short preparatory intervals

depends on whether the length of the interval is randomized or
constant (Altmann, 2004). If lag had been a between-participants
variable the error effect might have been larger.

From the self-report strategy data, it seems that rehearsal was
the dominant way to maintain placekeeping information during
interruptions. However, as interruptions go, they were relatively
frequent in our task. In environments where interruptions are less
frequent or somehow more surprising, strategies like rehearsal
may not be ready to hand, in which case we would expect
interruption effects to be larger.

The strategy data also indicate that rehearsal was flexible, with
different participants rehearsing different target information, and
some participants recoding steps into numerical or positional
information. The latter finding suggests that even if the inter-
rupted task were less distinctly verbal, people may nonetheless
recode task elements verbally so as to be able to bring rehearsal to
bear—unless the task materials made this difficult, in which case
we would again expect interruption effects to be larger.

3. The remember-advance model

3.1. Model overview

Here we describe our model at a functional level suitable for
interpreting the effects of our timing manipulation. The model
comprises a set of equations that determine the activation levels
and retrieval probabilities of various memory codes hypothetically
involved in placekeeping operations. The equations and the
associated theoretical assumptions are described in detail in the
Appendix. The model source materials are posted at msu.edu/
�ema/brieflags.

The basic theoretical assumption in the model is that placekeep-
ing operations—the control operations that select the next step
when one step is complete—involve two interacting memory
systems. One of these is an episodic memory of information left
over from recent performance. The other is an associative repre-
sentation of the task sequence stored in long-term memory.
Placekeeping involves a remember stage in which the system
consults the episodic memory for recent performance to determine
the most recently performed step, followed by an advance stage in
which the memory retrieved during the remember stage is used to
“look up” the next step in the representation of the task sequence
stored in long-term memory.

In terms of the first memory system, previous work suggests
that performance of even fine-grained tasks—including simple,
two-alternative forced-choice tasks like those performed on each
trial of the UNRAVEL task—involves control codes stored in episodic
memory that serve to organize operations like stimulus interpre-
tation and response selection (Altmann, 2013; Altmann and Gray,
2008). In context of the UNRAVEL task, we assume that a control
code is generated for each trial and includes the step to perform on
that trial. After the trial, the code lingers in episodic memory.
These codes decay over time, creating a ranking in which the most
recent code is the most active, the next most recent is the next
most active, and so on.

In terms of the second memory system, we assume that a task
sequence is represented as an associative chain, with each step
linked (only) to its successor. These links convey spreading activa-
tion from whichever step is in the focus of mental attention. Thus,
after the remember stage retrieves a control code from episodic
memory, the system focuses on this code, which makes the step for
that code an activation source. Activation then spreads from the
source step to its successors in the task sequence. This spreading
activation attenuates with each additional link that it spreads,
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creating a ranking of future steps in terms of activation, with the
next step the most active, the step after that less active, and so on.

We refer to old control codes as predecessors and to steps in the
task sequence following a given step as successors. For example,
pred1 is the most recent predecessor, representing the just-
completed step, and succ1 is the retrieved predecessor's immediate
successor. In general, predd is the dth predecessor and succd is the
dth successor, where d measures distance in number of performed
trials for predecessors and number of steps in the task sequence for
successors.

Correct performance occurs when the remember stage returns
pred1 and the advance stage returns succ1, so the probability of
correct performance depends on the retrieval probabilities for pred1
and succ1 versus other codes. The remember and advance stages
each retrieve the most active code (predecessor and successor,
respectively) when they execute, so retrieval probabilities are
determined by the activation levels of codes relative to one another.
pred1 is the most active predecessor, on average, because prede-
cessors decay as they age and pred1 is youngest. succ1 is the most
active successor, on average, because spreading activation attenu-
ates as it spreads, and succ1 is closest to the activation source. Thus,
usually the system generates correct performance.

A sequence error occurs when an older predecessor is retrieved
in place of pred1 or a more distant successor is retrieved in place of
succ1. For example, if the remember stage returns pred2 instead of
pred1, and if the advance stage then returns succ1 as it usually
does, the just-performed step will be repeated, representing a
sequence error with offset �1.

The reason pred2 could be retrieved in place of pred1 in this
scenario is that activation levels are noisy: the activation of a code
fluctuates about its mean, independently for each code and from
moment to moment. This activation noise means that even though
pred1 is more active than pred2 on average, it will occasionally be
less active. Intrusions specifically of pred2 on pred1 are central to
the model's account of the effect of brief lags, as we describe next.

3.2. Explaining the effect of the timing manipulation

The model's basic prediction for the timing effect in our
experiment rests on two characteristics of how predecessor activa-
tion decays (as defined by Eq. (A1) in the Appendix). The first is that
decay is negatively accelerating, such that younger predecessors
decay faster than older ones. This characteristic predicts that during
a lag, pred1 should decay faster than pred2, such that after a lag
there is increased probability of an intrusion by pred2 and thus an
error at offset �1. The second characteristic is that decay continues
without a lower bound—that is, although predecessors decay more
slowly as they age, they nonetheless decay indefinitely. This
characteristic predicts that predecessors older than pred2 will be
too decayed to show much of an effect if the activation of pred1
changes. The two characteristics together predict that error rates
should be higher in the lag condition than in the nolag condition,
with the difference registering mainly at offset �1 because most
intrusions will be from pred2.

This basic prediction was incorrect, in that error rates were
lower in the lag condition than in the nolag condition. This
discrepancy is valuable for purposes of evaluating the goodness-
of-fit test we describe in Section 4, because it identifies a
theoretical problem with the model that the test should be able
to detect and ideally help characterize.

We refer to this incorrect version of the model as the full decay
version, because pred1 decays throughout the lag. To explain the
actual outcome of the experiment we developed three other
versions. The no decay version represents Cowan's (1999) idea that
information in the focus of mental attention does not decay. We
assume that pred1 stays in the mental focus of attention during a

lag, because pred1 governed performance on the pre-lag trial and
there is no required processing during the lag that would displace it.
In the no decay version, then, pred1 does not decay during the lag
while pred2 does, such that accuracy should be higher after a lag.

In the partial decay version of the model, we weaken the
assumption that information in the focus of attention is comple-
tely protected against decay, supposing only that information is
somewhat protected against decay. In this version we added a free
parameter to represent the amount by which pred1 does decay
during the lag. This version can also be interpreted as incorporat-
ing a strengthening or attentional refresh process that executes in
the time available during the lag. The effect of such a process
would be to give an activation boost to pred1 that offsets some but
not all of the decay that pred1 would otherwise undergo during
the lag.

Adding a parameter necessarily gives a model more flexibility to
fit the data, so the partial decay version might pass our goodness-
of-fit test simply because it has an extra parameter, not because the
extra parameter reflects a mechanism necessary to explain the data.
To control for this possibility we developed the extra-parameter
control version of the model in which we added a different free
parameter to the full decay model. The parameter we added
governs the amount of activation noise, which affects accuracy
more broadly than offset �1, so estimating it separately for each
timing condition should help absorb the main effect of the timing
manipulation. If this version nonetheless fails our goodness-of-fit
test and the partial decay version passes, this would reinforce the
conclusion that the effect of the lag is to improve memory
specifically for pred1.

4. Testing the model

4.1. The goodness-of-fit test

In the previous section we described four different versions of
our model. Here we test each against the data, but first describe
the goodness -of-fit test itself.

The test evaluates whether a model fit to individual participant
data leaves systematic variance due to experimental factors unex-
plained. The test builds on the ANOVA design used to examine the
empirical data. In our design the three experimental factors were
timing, position, and offset. To test model fit, we added a fourth
factor called fit, with levels data, meaning the empirical values, and
model, meaning the best-fitting model values. The fit factor was
coded as a within-participants variable. Of interest are any interac-
tions of the fit factor with the experimental factors, which would
indicate that the model fits the data differently at different levels of
the experimental factor(s).

The inferential element of the test comprises a set of F ratios for
interactions of the fit factor with experimental factors. These F
ratios are formed using the error variance in the data, not the error
variance pooled across the two levels of fit. The model contributes
no error variance of its own, so a pooled error term is necessarily
attenuated, the more so the better the model fit. The empirical
error term, in contrast, provides a scale against which to measure
the extent to which model-data residuals differ from 0 across cells
of the design. A significant F for an interaction of experimental
factors with fit, based on this error term, indicates that the amount
by which model-data residuals differ from 0 is large relative to
between-participants variability.

In the following sections we demonstrate the test by applying it
to each of the four model versions. The test outcomes appear in
Table 2, where information from the empirical ANOVA in Table 1 is
replicated four times, once for each model. Each row shows a
contrast from Table 1 now including the fit factor. The F ratio for
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each contrast is formed from the MSeffect, MSerror, and degrees of
freedom on that row. The MSerror and degrees of freedom are
repeated from Table 1 and are the same for each model.

To preview the test outcomes, three of the models produce
significant interactions with the fit factor and can therefore be
rejected as not fully accounting for effects of the experimental
factors. One model does account for the data, with Fs o1 for all
contrasts.

4.2. Testing the full decay version

In the full decay version of the model, we suppose that pred1
decays relative to pred2 during a lag, predicting a higher error rate
in the lag condition specifically at offset �1. In Fig. 3, the fits of the
full decay model are shown as dot-dashed lines (the data are shown
as markers). The figure shows a substantial model-data misfit at
offset �1, most noticeably for the post-interruption trial (filled
markers). For the post-interruption trial, comparing across panels,
the model predicts that �1 errors should have been more frequent
in the lag condition (left panel) than in the nolag condition (right
panel), whereas the empirical pattern was the opposite.

The goodness-of-fit test showed two significant interactions
(Table 2). The Timing� Fit interaction indicates that the model
predicted the wrong main effect of timing. Specifically, the interac-
tion means that the model fit the two timing conditions differently,
predicting too many errors in the lag condition and too few in the
nolag condition. The misfit is distributed across the two conditions
like this as a function of the fitting process maximizing model
likelihood.

The Timing�Offset� Fit interaction means that the misfit
across timing conditions was worse at some offsets than others.
An analysis on offset �1 showed a significant Timing� Fit inter-
action, F(1, 149)¼19.6, po .001, η2p¼ .116, indicating that the model
predicted the wrong effect of timing specifically at that offset. An
analysis on offsets excluding �1 showed no significant interac-
tions, all p4 .164 and η2po .013, indicating that at these offsets the
model fit was acceptable.

Thus, the goodness-of-fit test offers an inferential basis for
saying that this version of the model predicts too many errors after
a lag specifically at offset �1. The theoretical implication is that
pred1 does not decay during the lag like other predecessors.

4.3. Testing the no decay version

In the no decay version of the model we suppose that pred1 is
protected against decay during the lag because it remains in the
focus of attention, predicting a lower error rate in the lag condition
specifically at offset �1. In Fig. 3, the fits of the no decay model are
shown as dashed lines. The figure again shows a substantial
model-data misfit at offset �1, most noticeably for the post-
interruption trial. For this trial, comparing across panels, the
model now predicts the correct direction of the timing effect but
over-predicts the size of the effect.

The goodness-of-fit test now shows no significant Timing� Fit
interaction (Table 2), because the model predicted the correct
direction of the timing effect. However, the test again shows a
significant Timing�Offset� Fit interaction (Table 2), because the
model over-predicts the size of the effect at offset �1. An analysis
on offset �1 showed a significant Timing� Fit interaction, F(1,
149)¼14.5, po .001, η2p¼ .089, but an analysis on offsets excluding
�1 showed no significant interactions, Fso1, indicating that at
these offsets the fit was acceptable.

Thus, the goodness-of-fit test offers an inferential basis for
saying that this version of the model predicts too few errors after a
lag specifically at offset �1. The theoretical implication is that
pred1 is not fully protected against decay during the lag.

4.4. Testing the partial decay version

In the partial decay version of the model we suppose that pred1
is partially protected against decay during the lag. This model has
an extra parameter Y that represents the extent of this protection.
Activation in our model is based on timing parameters (see Eq.
(A2) in the Appendix), so Y is coded as a delay from onset of the
lag until pred1 starts decaying.

In Fig. 3, the fits of the partial decay model are shown as solid
lines. The fit is now better than for the previous models, and the
goodness-of-fit test yields no basis to reject the model, with Fso1
for all interactions involving fit (Table 2). The mean estimated
value of Y was 0.657 seconds (Table A1), meaning that whatever
process protects or boosts the activation of pred1 during the lag is
equivalent to delaying decay of pred1 by two-thirds of a second
from the start of the lag.

4.5. Testing the extra-parameter control version

The partial decay model would have fit better than the full
decay and no decay models in any case because it had an extra free
parameter. To evaluate whether simply adding a parameter
allowed the partial decay model to pass our goodness-of-fit test,
we added a different extra parameter to the full decay model. The
parameter we added governs the amount of activation noise—that
is, the standard deviation of moment-to-moment fluctuations of
activation levels of codes in memory. We estimated two activation
noise parameters, one each for the lag and nolag conditions,

Table 2
Goodness-of-fit Analysis of Variance for the Four Models, with Degrees of Freedom
(df) and MSerror from Table 1 (Same for Each Model).

Contrast dfeffect dferror MSeffect MSerror F p η2p

Full decay model
Timing (T)� Fit (F) 1 149 3.63E-03 2.94E-04 12.4 .001n .077
Position (P)� F 5 745 6.68E-05 7.01E-04 0.1 .993 .001
Offset (O)� F 5 745 3.89E-04 5.00E-04 0.8 .565 .005
T�P� F 5 745 6.04E-04 2.81E-04 2.1 .058� .014
T�O� F 5 745 1.29E-03 3.13E-04 4.1 .001n .027
P�O� F 25 3725 1.78E-04 3.62E-04 0.5 .984 .003
T�P�O� F 25 3725 4.07E-04 3.21E-04 1.3 .166 .008

No decay model
T� F 1 149 3.87E-04 2.94E-04 1.3 .253 .009
P� F 5 745 6.68E-05 7.01E-04 0.1 .993 .001
O� F 5 745 3.24E-04 5.00E-04 0.6 .662 .004
T�P� F 5 745 4.17E-04 2.81E-04 1.5 .193 .010
T�O� F 5 745 1.51E-03 3.13E-04 4.8 .000n .031
P�O� F 25 3725 1.98E-04 3.62E-04 0.5 .967 .004
T�P�O� F 25 3725 5.33E-04 3.21E-04 1.7 .021n .011

Partial decay model
T� F 1 149 1.16E-04 2.94E-04 0.4 .531 .003
P� F 5 745 6.22E-05 7.01E-04 0.1 .994 .001
O� F 5 745 2.72E-04 5.00E-04 0.5 .743 .004
T�P� F 5 745 8.07E-05 2.81E-04 0.3 .920 .002
T�O� F 5 745 2.51E-04 3.13E-04 0.8 .548 .005
P�O� F 25 3725 1.78E-04 3.62E-04 0.5 .984 .003
T�P�O� F 25 3725 2.08E-04 3.21E-04 0.6 .908 .004

Extra-parameter control model
T� F 1 149 2.03E-04 2.94E-04 0.7 .407 .005
P� F 5 745 7.08E-05 7.01E-04 0.1 .992 .001
O� F 5 745 3.98E-04 5.00E-04 0.8 .553 .005
T�P� F 5 745 9.08E-05 2.81E-04 0.3 .899 .002
T�O� F 5 745 8.23E-04 3.13E-04 2.6 .023n .017
P�O� F 25 3725 2.03E-04 3.62E-04 0.6 .962 .004
T�P�O� F 25 3725 2.53E-04 3.21E-04 0.8 .759 .005

n p o .05.
� 05op o .10.
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instead of one such parameter for both conditions as in the other
models.

Activation noise is an effective choice for our purposes here
because it is not selective for any one predecessor or successor
(see Eqs. (A3) and (A5) in the Appendix) and therefore affects
model predictions more generally than at offset �1. Because of
this general effect, estimating activation noise separately for each
timing condition should help absorb the main effect of timing and
thus weaken the Timing� Fit interaction that was significant for
the full decay model—without necessarily weakening the
Timing�Offset� Fit interaction, precisely because activation noise
affects accuracy more generally than offset �1.

Consistent with this analysis, the goodness-of-fit test for this
version of the model shows no Timing� Fit interaction (Fo1) but
continues to show a significant Timing�Offset� Fit interaction
(Table 2). (The model values are not shown in Fig. 3.) The
theoretical implication is that it was not simply adding a para-
meter that allowed the partial decay model to pass our test—it was
adding a parameter that targeted the model-data misfit specifi-
cally at offset �1.

4.6. Discussion

The winning model was the partial decay version, in which
pred1 decays somewhat during the lag but less than pred2, such
that the error rate at offset �1 is lower after a lag than after no lag.
The goodness-of-fit test helped us converge on this account,
rejecting models that did not fit the data and localizing the misfit
to a level of an experimental factor (offset �1) where performance
was hypothetically most sensitive to the activation of pred1. The
test then further rejected a model that did not single out pred1 for
special processing but did accommodate the main effect of the
timing manipulation with an extra parameter, indicating that not
just any extra parameter will do and that the one we added to the
partial decay model addressed an underlying theoretical problem
with the model.

In practical terms, the test gave us a clear signal for when to
stop tinkering with the model. In contrast, descriptive measures of
fit such as R2 and root mean squared deviation (rmsd) offer no
practical decision rule that could have guided the theoretical
convergence we described above. For example, the three model
versions plotted in Fig. 3 all have high R2 values—.98, .92, and .97
for the full decay, no decay, and partial decay versions, respectively
—and low rmsd values—0.35%, 0.37%, and 0.19%, respectively—so
by some standard are all acceptable. Similarly, the error bars in
Fig. 3 offer no clear sense of whether model-data misfits are large
enough to be systematic. For instance, the solid lines representing
the winning model do not pass through the error bars at offset �3,
which might be a signal that the model is incorrect. However, the
goodness-of-fit test says this misfit is not large enough relative to
noise in the data to warrant further model changes.

From a hypothesis-testing perspective, a weakness of our
method is that accepting a model depends on accepting a null
effect. However, accepting the null is characteristic of goodness-of-
fit testing generally (see, e.g., D'Agostino and Stephens, 1986), so
although the use of ANOVA for goodness-of-fit testing is novel, it
fits within a larger analytical tradition. Moreover, even in context
of hypothesis testing, null effects are meaningful when power to
detect an effect is high. Although we have not developed a formal
approach to power analysis using our method, we have shown
here that the method can inferentially reject at least some
incorrect theoretical assumptions.

The main limitation of our approach is that it requires a model
that can be fit to participant-level data to generate distributions of
model-data residuals. This requirement means that each partici-
pant must generate enough error data to constrain a model, which

means that not all tasks will work. The requirement may also be
difficult to meet unless the model is represented as closed-form
equations, for which maximum likelihood estimation using non-
linear optimization methods is computationally tractable. Stochas-
tic cognitive simulations have advantages over closed form mod-
els, as we discuss below in Section 5.4, but we know of no practical
techniques for fitting such models to hundreds of data sets using
maximum likelihood estimation. In Section 5.3 we discuss the
benefits and limitations of our test in relation to a more common
method of model evaluation involving Bayesian statistics.

5. General discussion

We found that brief lags occurring randomly between trials had
a small but significantly positive effect on accuracy on the post-lag
trial, rather than functioning as brief interruptions that disrupted
performance. We also found that rehearsal was the dominant
strategy for maintaining placekeeping information during inter-
ruptions—at least in our task, where the task materials were verbal
and where interruptions were frequent enough that people could
be expected to keep rehearsal mechanisms at the ready.

Our model explains the effect of brief lags in terms of memory
processes: Forcing people to slow down a little with a brief lockout
period between trials made memory for immediate past perfor-
mance a little more distinct, which led to fewer repetitions of the
last step. However, the model also implies that the benefits of
slowing performance are subject to theoretical constraints. In the
version of the model that fit the data, pred1 was protected against
decay not for the full interval of the lag, but only for the period
estimated by the Y parameter (Y¼0.657 s, Section 4.4). One inter-
esting possibility is that Y represents an architectural limit on the
time for which an item in the focus of attention is effectively
protected from decay. If so, then the estimate of Y would be the
optimal lag between events, in the sense that lags up to that length
would add to the distinctiveness of pred1 but longer lags would not.
Testing this possibility would require a parametric manipulation of
lag length and estimation of Y for each level. If there is an
underlying architectural limit, then estimates of Y should increase
with lag length to that limit and then level off, with performance
accuracy following a parallel pattern.

More generally, the memory distinctiveness account of the lag
effect suggests that episodic memory processes might mediate other
kinds of speed-accuracy tradeoffs as well. For example, when people
slow down strategically in order to be more careful—as opposed to
slowing down because the procedure makes them, as here—the
effect on accuracy may simply reflect the effect of interfering control
information in memory having a chance to decay a little more, rather
than any reallocation of cognitive resources.

The model also captures effects of the other manipulations in
our experiment, as indicated by our goodness-of-fit test. The
gradients across the offset factor (Fig. 3; see also Altmann et al.,
2014) arise because older predecessors and more distant succes-
sors have less activation and thus are less likely to intrude on the
memory retrievals in the remember and advance stages, respec-
tively. The large effect of interruptions (in Fig. 3, filled vs. empty
markers) arises both because rehearsal takes some time to set up
after interruption onset, allowing pred1 to decay relative to older
predecessors, and because the activation spreading to successors
decays during interruptions (see discussion of the E and Wpost

parameters, respectively, in Section A.1 of the Appendix). In
ongoing work we are probing these mechanisms in more detail
by fitting the model to data from a range of interruption durations.

An open question is whether the processes that kept pred1
active while older codes decayed were passive and structural (the
protected focus construct) or active and strategic (strengthening
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and/or attentional refreshing). Manipulating the frequency or
predictability of lags might yield some evidence on this point. A
structural account would seem to predict little to no change in the
effect of brief lags, whereas a strategic account might predict a
larger effect of brief lags the more predictable they are, as the
system would then have a chance to adapt.

Below we address four other issues arising from this study: the
external validity of the UNRAVEL task (Section 5.1), the seeming
fine line between brief lags that help performance and brief
interruptions that hinder it (Section 5.2), the relationship of our
goodness-of-fit test to Bayesian model selection (Section 5.3), and
limitations of our model (Section 5.4).

5.1. External validity of the UNRAVEL task

The UNRAVEL task is abstract in that the stimulus materials and
decision rules bear little resemblance to any task that people
perform in the workplace or at home. And yet, it represents control
operations common to a diverse set of tasks. For example, language
production requires that words be produced in the correct order,
and research in this domain has examined sequence errors at the
level of anticipation and perseveration errors (Dell et al., 1997),
which map to “þ” and “–” levels of offset, respectively, in our task.
Event counting (Carlson and Cassenti, 2004) plays a role in everyday
activities ranging from counting patrons in a restaurant (to remain
with capacity limits) to counting repetitions of an exercise during a
physical training regimen. Errors in event counting can be inter-
preted as skipping or repeating steps in the sequence of positive
integers. Finally, serial recall involves reproducing a randomized
sequence correctly from memory, but positional confusions at test
can nonetheless be interpreted as skipping or repeating steps in the
sequence of positional or context codes representing serial position
(e.g., Anderson and Matessa, 1997; Brown et al., 2000).

These domains differ in many ways, but they all share constraints
represented in our task. All involve chaining along some mental
representation in a prescribed order, without repeating or omitting
elements; all are susceptible to interruptions, to the extent they play a
role in daily life; and all involve verbal materials that make them
amenable to rehearsal. Our task was designed to represent these
common features under conditions that produce high enough error
rates to examine as a function of theoretically relevant factors like
offset and thus support development of tightly constrained models.
Preliminary evidence suggests that placekeeping mechanisms are
relatively task-independent, in that sequence error rates do not seem
to vary with difficulty of individual task steps (Altmann et al., 2014), so
there is reason to think the model we developed here may generalize.
Indeed, in serial recall, where errors have been analyzed extensively,
the data show gradients similar to those in our task inwhich errors are
more frequent the closer the item is to its correct output position (e.g.,
Brown et al., 2000).

Nonetheless, validation of laboratory tasks is an important step,
and in recent work we found that performance on our task predicts
a measure of general cognitive ability (Hambrick and Altmann, in
press), in line with proposals that general ability involves systematic
sequential processing of subgoals (Carpenter et al., 1990; Duncan,
2010). Similar validation would be useful for other tasks used in
interruptions research also. As we noted earlier, such tasks often
lack external placekeeping cues, leaving open the question of
whether they predict performance on interfaces designed to have
the proper cues. Moreover, cover stories such as doughnut produc-
tion (Brumby et al., 2013) or financial management (Trafton et al.,
2011) may add face validity, but whether they really add external
validity is an open question. A recent study of the effect of
interruptions on the quality of written essays (Foroughi et al., in
press) is the relatively rare case in which interruption manipula-
tions are performed directly on a criterion task.

5.2. Brief Lags versus brief Interruptions

The effect of the timing manipulation in our experiment was
opposite the effect of brief interruptions in our previous work with
the UNRAVEL task (Altmann et al., 2014). In that study, participants
typed only 2 letters per interruption, instead of 28 as here, and the
mean duration of interruptions was only 2.7 seconds, which is not
that much longer than the 1-second lag between trials here. The
question, then, is why the lag here helped rather than hindered
performance. One difference is that lags were more frequent,
occurring every second trial on average rather than every six trials.

However, what distinguished the effect of the 1 s lags here
from the effect of the 2.7 s interruptions in Altmann et al. (2014)
was probably neither the length nor frequency of the events, but
that the lags were unfilled whereas the interruptions were filled.
Monk et al. (2008, Experiment 3) compared unfilled and filled
interruptions as short as 3 s and found that resumption lags were
longer after filled interruptions, presumably because the filler task
interfered with rehearsal of information related to the interrupted
task. Based on our model, we would further predict that error rates
would increase specifically for offset �1. In the full decay version
of the model, pred1 decays during the lag just like any other
predecessor—as it would if there were a filler task that displaced
pred1 from the focus of attention and/or prevented pred1 rehearsal.
As pred1 decays, pred2 becomes more likely to intrude on the
remember stage on the post-interruption trial, predicting an
increase in �1 errors. In future work it would be useful to test
this prediction by contrasting unfilled with filled interruptions
using a task like UNRAVEL that involves placekeeping and affords
measurement of the offset factor.

5.3. The goodness-of-fit test in relation to Bayesian model selection

A method often advocated for selecting between competing
models is the Bayesian Information Criterion, or BIC (e.g.,
Wagenmakers, 2007). The BIC has at least two attractive character-
istics. First, it is based on likelihoods, which have to be computed
anyway in the course of maximum likelihood estimation. Second, it
includes a method for adjusting the likelihood of a model based on the
number of free model parameters, which is useful when comparing
models with different numbers of parameters as we did here.

One limitation of the BIC approach is that it represents no
information about the functional form of parameters. For example,
parameters such as Y in the partial decay model (Section 4.4) and
the extra activation noise parameter in the extra-parameter
control model (Section 4.5) are treated as adding exactly the same
amount of flexibility to the model—when, as we have shown, these
two parameters had different effects on the model's ability to
account for systematic variance in the data.

To demonstrate this limitation, we used the BIC approach to
compare the full decay and partial decay models, which have five
and six parameters, respectively. The log likelihoods for the two
models, summed across participants, are �2542 for the full decay
model and �2474 for the partial decay model. Thus, the log like-
lihoods favor the partial decay model (�2542o�2474), as does our
goodness-of-fit test. However, the corresponding BIC values, which are
adjusted for number of parameters, are 8291 for the full decay model
and 8797 for the partial decay model. For BIC values, lower is better, 1

so these values favor the full decay model (8291o8797).

1 BICðMÞ ¼ �2lnðLikelihoodÞþklnn, where M is a model, Likelihood is the
maximum likelihood of model M fit to a given participant's data, k is the number
of free parameters, and n is the number of observations (Wagenmakers, 2007). In
our application, k¼5 for the full decay model and k¼6 for the partial decay model,
and n¼72 for both (2 timing conditions x 6 offsets x 6 positions).
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Nonetheless, we would say that the full decay model includes
an incorrect theoretical assumption, which is that pred1 decays
like any other predecessor during an unfilled lag. We could be
wrong, of course, but there is no reason to think that the BIC
approach is right, because it ignores the functional form of the
model's parameters whereas our approach tests the functional
form directly against the data. The BIC approach also summarizes
model fit in one number, whereas our approach yields a set of
contrasts (Table 2) that help pinpoint the locus of the misfit. In
several senses, then, our method seems to factor in more
information.

A second limitation of the BIC approach is that it is structured
to select the best among a set of models, rather than testing a
given model inferentially against data. When there is only one
model, and the question is whether it provides an adequate
account of the data, the BIC approach offers little useful informa-
tion. That said, when there are multiple models that pass an
inferential goodness-of-fit test like ours, the BIC approach might
be a useful complementary method to select the winning model
heuristically.

5.4. Limitations of the model

Here we address two limitations of our model. The first
concerns its scope with respect to strategic variability in task
performance. The second concerns the tradeoffs associated with a
closed-form representation compared with a computational cog-
nitive simulation.

5.4.1. Strategic variability in placekeeping during interruptions
The data we reported in Section 2.3.3 indicate that participants

used various strategies to maintain their place in the task
sequence during interruptions. The predominant strategy was
rehearsal, but there was variation in what kinds of codes partici-
pants rehearsed. Roughly half of participants reported rehearsing
the step they had just completed (a predecessor, in our parlance)
whereas the other half reported rehearsing the step to be per-
formed after the interruption (a successor). Our model represents
only the predecessor case, which is the more basic of the two in
that to retrieve a successor to rehearse the system must first
retrieve a predecessor. More importantly, the difference between
predecessor and successor rehearsal should be absorbed by
differences in estimates of model parameters, as we discuss in
Section A.1 of the Appendix.

That said, sequence errors could arise from other mechanisms
that we have not represented in our model. One possibility is a
kind of reality monitoring failure affecting rehearsal during inter-
ruptions (Trafton et al., 2011). As the system rehearses, it could
lose track of whether it is rehearsing the last step or the next step,
and thus repeat or skip a step depending on whether it mistakes
the last step as the next step or vice versa. This mechanism can
account for þ1 and �1 errors, but whether it can account for the
full error gradients across the offset factor is a question we leave
for future work.

5.4.2. Closed-form versus simulation models
Closed-form models like the one we used here are relatively

straightforward to fit to participant-level data, even if they are
non-linear. These participant-level fits in turn played an important
role here in generating the distributions of residuals we used to
test our model, and could in principle be used to characterize
individual differences in terms of cognitive parameters rather than
latent statistical variables, an approach we hope to pursue in
future work.

However, closed-form models are limited in that they cannot
tractably represent all dynamic processes that might be of interest.
For example, we did not represent the possibility of second-order
errors, in which the wrong predecessor is retrieved on one trial,
leading to creation of an out-of-sequence control code on that trial
that then changes the distribution of retrieval probabilities across
different steps of the task sequence on the next trial. Representing
all the necessary contingencies mathematically was simply not
tractable, so we made a simplifying assumption (described in more
detail in Section A.2.3 of the Appendix) that for any given trial,
performance leading up to that trial was error-free. In a stochastic
cognitive simulation, no particular effort would have been neces-
sary to represent second order errors, which would instead be a
natural product of the operation of the underlying memory
processes.

In future work it may be useful to take a hybrid approach in
which simulation experiments are used to evaluate whether
mechanisms like second-order errors influence performance
enough to be detectable behaviorally. Such an approach might
offer additional leverage as we move toward more complete
models of interrupted task performance that factor in perceptual
placekeeping cues, hierarchical task structures, partial orderings,
differential error costs, and other characteristics of everyday
sequential performance.

Appendix

Here we describe the remember-advance model in detail.
Section A.1 gives an overview of the model parameters and the
mechanisms they represent, Section A.2 describes the model
equations and associated theoretical assumptions, and Section
A.3 describes the model-fitting procedure and parameter values.

A.1. Overview of model parameters

The model comprises a set of equations that characterize
activation levels of predecessors and successors, map those to
retrieval probabilities, and map those in turn to probabilities of
sequence errors at different levels of the offset factor. We fit the
model to each participant's data by estimating the values of a set
of free parameters that affect the values of the different equations.
The full decay and no decay versions of the model each have the
same five parameters, and the partial decay and extra-parameter
control models each have an additional sixth. Here we describe
each parameter in terms of the cognitive mechanisms and any
associated assumptions it represents. Estimated values for each
parameter appear in Table A1.

The first parameter, E, concerns rehearsal, which was the
dominant strategy used to maintain placekeeping information
during interruptions (Section 2.3.3). We assume the following
operating principles for rehearsal. Rehearsal does not begin

Table A1
Mean Best-Fitting Parameter Values for the Four Model Versions.

Parameter Full decay
version

No decay
version

Partial decay
version

Extra-parameter
control version

E 5.133 3.624 3.867 4.246
s 0.046 0.055 0.056 0.050
Wpost 1.169 0.387 0.375 0.315
Wbase 0.412 0.509 0.511 0.455
g 0.295 0.316 0.341 0.317
Y 0.657
slag 0.046

Note. E and Y are in seconds, Wpost and Wbase are in units of activation, and g, s, and
slag are dimensionless.
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immediately with interruption onset, but only after an interval E
during which the system attends to the interrupting stimulus and/
or activates the rehearsal machinery. After this interval, rehearsal
begins by retrieving a predecessor as the rehearsal target. Rehear-
sal then maintains the retrieved predecessor in an active state
through the rest of the interruption, while unrehearsed predeces-
sors continue to decay. Thus, at the end of the interruption the
rehearsed predecessor is much more active than other predeces-
sors and therefore has high probability—we assume 1.0—of being
the product of the remember stage on the post-interruption trial.

Under these operating principles, the interval E determines the
probability of a correct step selection on the post-interruption
trial. That is, after E seconds into the interruption, pred1 will have
decayed relative to pred2 (and older predecessors), and that
amount of decay will determine the probability of pred1 entering
the rehearsal process and therefore ultimately guiding selection of
the step for the post-interruption trial. The role of the interval E in
determining accuracy on the post-interruption trial is consistent
with simulation studies suggesting that critical rehearsal processes
occur early in an interruption (Salvucci et al., 2009).

The second parameter, s, governs the amount of activation noise. s is
related by a transformation to the standard deviation of the moment-
to-moment fluctuations in activation levels, so a larger s means more
noise. For the extra-parameter control model (Section 4.5) we esti-
mated this parameter separately for the lag and nolag conditions.

The third and fourth parameters, Wpost and Wbase, represent the
amount by which successors are primed by spreading activation.
Wpost is for the post-interruption trial and Wbase is for baseline
trials. The two are distinct because priming accumulates over time
when a source of activation is available, and decays over time
when it is not (Anderson and Pirolli, 1984). We assume that during
interruptions the focus of attention is elsewhere, such that prim-
ing decays. Thus, Wpost should generally be smaller than Wbase.

The Wpost parameter should accommodate at least some of the
variability in self-reported strategy use identified in Section 2.2.3.
Most of the variability was in terms of what code participants
reported rehearsing, with roughly half indicating the last completed
step (a predecessor) and the other half the step to be performed
after the interruption (a successor). In the model we only represent
the predecessor case, which is the more basic of the two. That is, to
retrieve a successor to rehearse, the system must first retrieve a
predecessor, so the E parameter will affect accuracy the same way
in both cases. However, if the system then immediately retrieves a
successor as a rehearsal target, instead of rehearsing the predeces-
sor and waiting until the position 1 trial to perform the advance
stage, activation spreading to successors will be less decayed. Less
decay of spreading activation is represented by a relatively smaller
shortfall of Wpost relative to Wbase, as we describe in Section A.2.2.

The fifth parameter, g, is the proportion of spreading activation
reaching a step that is passed on to that step's successor. Because
spreading activation attenuates as it spreads, g should take on
values less than 1.

The partial decay model (Section 4.4) has a sixth parameter Y
that represents the interval between the start of the lag and the
moment at which pred1 starts decaying. This parameter in effect
creates a continuum between the full decay and no decay models,
where Y¼0 for the full decay model and Y¼1 s (the duration of
the lag) for the no decay model.

In the model equations discussed in the next section, E plays a
role in Eq. (A2), s in Eqs. (A3) and (A5), Wpost and Wbase as variants
of W in Eq. (A4), and g in Eq. (A4).

A.2. Model equations

Here we describe the model equations—those affecting activa-
tion and retrieval probability of predecessors, those affecting

activation and retrieval probability of successors, and those that
map retrieval probabilities to sequence error probabilities, fol-
lowed by modifications that implement the no decay and partial
decay models.

A.2.1. Predecessor activation and retrieval probability
The activation of predd—the control code that governed perfor-

mance of the dth preceding trial—is

AðtdÞ ¼ �0:5lnðtdÞ; ðA1Þ
where td is the age of predd and 0.5 is the decay rate. Eq. (A1) is a
simplified representation of base-level activation in ACT-R (Anderson
and Lebiere, 1998). (The full-blown representation, in which an item's
activation is boosted each time the item is retrieved, is not well suited
to representing the activation of control codes, which have to decay for
functional reasons regardless of how often they are retrieved; Altmann
and Gray, 2008.) The decay rate of 0.5 is a standard value that has
emerged across ACT-R models (Anderson, 2007).

The decay function specified by Eq. (A1) has two important
characteristics that are the basis for interpreting the effects of the
timing manipulation in our experiment. The first is that decay
negatively accelerates, with greater decay per unit time for younger
predecessors. Thus, as predecessors decay together as a set, pred1
loses activation relative to older predecessors and thus becomes
less likely to be retrieved, increasing the chance of a retrieval error.

The second characteristic is that the function has no asymptote,
such that predecessors decay indefinitely. Thus, as a predecessor
ages, its retrieval probability becomes vanishingly small, which has
the functional effect of reducing proactive interference in episodic
memory for control codes (Altmann and Gray, 2008). For our
purposes, the critical implication is that intrusions on pred1 come
mainly from pred2, which mainly generate errors at offset �1 (but
see Section A.2.3). Thus, factors that affect how and whether pred1
decays should mainly affect the �1 error rate.

Several factors play a role in determining td in Eq. (A1), and
thus the activation of predd. One is the response latency, R, to
perform a trial. A second is the lag L, if any, between the response
and the next stimulus onset; on average, half of all trials are
followed by a lag. A third factor is the interruption duration, I,
which affects the age of most codes from before an interruption
(though not all, as we describe below).

A fourth factor is rehearsal of a predecessor during the inter-
ruption. Rehearsal improves accuracy on the post-interruption
trial, where the rehearsed predecessor is the target of the
remember stage, but impairs accuracy on the baseline trials that
follow, where the rehearsed predecessor is a distractor that could
intrude on the target of the remember stage. We represent both
effects in terms of predecessor age, which modulates predecessor
activation. Of interest is the age of the rehearsed predecessor
when the critical retrieval of that predecessor occurs.

On the post-interruption trial this critical retrieval occurs when
rehearsal starts, E seconds into the interruption (see Section A.1).
This retrieval is the critical one under the assumption that
whatever predecessor enters rehearsal is also then the product
of the remember stage on the post-interruption trial (Section A.1).
If rehearsal is as prevalent as our strategy data suggest (Section
2.3.3), then estimates of E should generally be less than I, the full
interruption duration.

On baseline trials, meaning trials at position 2 or later, the
critical retrieval occurs at the start of the trial. The correct retrieval
target on baseline trials is always the predecessor from the
preceding position, not the predecessor rehearsed during the
interruption, so the rehearsed predecessor is a distractor rather
than a target. We assume that rehearsal served to offset decay of
the rehearsed predecessor during the interruption, leaving that
code as active as it would have been had the interruption never
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happened. We also assume, for tractability and only for baseline
trials, that the rehearsed predecessor is the one from the pre-
interruption trial (we elaborate on this assumption in Section
A.2.3). Thus, on baseline trials, the age of the pre-interruption
predecessor is simply the age of the post-interruption predecessor
plus the time between trials.

Taking these various factors into account, the age td of predd in
the full decay model described in Section 4 is

td; nolag ¼
Rþðd�1ÞðRþL=2ÞþE for position¼ 1
Rþðd�1ÞðRþL=2Þ for positionZ2 and drposition
Rþðd�1ÞðRþL=2Þþ I for positionZ2 and d4position

8><
>:

td; lag ¼ td; nolagþL ðA2Þ

where position is the serial position of a trial after an interruption,
with position 1 being the post-interruption trial and positions
2 and later being baseline trials. L¼1 is the lag, and the L / 2 terms
reflect the fact that half of all trials between predd41 and pred1
were followed by a lag. R is the response latency on trials and I is
the interruption duration (Section A.3 gives means for R and I and
describes how they were computed). The no decay and partial
decay models are implemented in terms of adjustments to Eq.
(A2), as described in Section A.2.4.

Eq. (A2) defines td separately for the nolag and lag conditions.
The lag case, presented second, is defined in terms of the nolag
case. That is, td; lag is simply L seconds greater than td; nolag, to
account for the lag that occurred between the current trial and the
previous trial (or, for the post-interruption trial, between the
interruption and the pre-interruption trial).

The nolag case is defined by three clauses, each of which
applies to a separate set of predecessors. The first clause applies to
all predecessors when the current trial is the post-interruption
trial (position¼1). On this trial, pred1 is from the pre-interruption
trial, so is RþE seconds old, and pred2 is from the trial before that,
so is older than pred1 by the average time between trials, which is
RþL / 2 because the lag occurs after half of all trials on average.

The second clause of the nolag case applies to predecessors that
follow the interruption ðdopositionÞ and the predecessor from
the pre-interruption trial ðd¼ positionÞ, when the current trial is a
baseline trial ðpositionZ2Þ. For example, for position¼2, pred1 is
from the post-interruption trial and pred2 is from the pre-
interruption trial, and by assumption pred2 was rehearsed during
the interruption. Thus, the age of pred1 is R, and by assumption
pred2 is older than this by the average time between trials, RþL / 2,
not by the duration of the interruption, I.

The third clause of the nolag case applies to the predecessors
not covered by the second clause, namely those preceding the pre-
interruption trial ðd4positionÞ, when the current trial is a baseline
trial ðpositionZ2Þ. For example, for position¼2, pred3 is from the
pre-pre-interruption trial, and its age is Rþ2(RþL/2)þ I¼3R
þLþ I, where 3R is the total response latency for 3 consecutive
trials, L is the average time due to lags following the pre-pre-
interruption and pre-interruption trials (2 opportunities� .5 prob-
ability for each), and I is the interruption duration.

Under Eq. (A2), the predecessor from the pre-interruption trial
will generally get younger from position 1 to position 2, instead of
older, because for position 2 we assume the pre-interruption
predecessor was rehearsed during the interruption, and represent
the effect of this rehearsal in terms of reduced age. This manip-
ulation of age loads the age construct with multiple meanings, but
is a tractable way to include some representation of rehearsal in a
closed-form model without extra machinery or free parameters. To
make our assumptions about predecessor age and rehearsal as
transparent as possible, we have posted worked examples with
the supplementary materials at msu.edu/�ema/brieflags.

Eqs. (A1) and (A2) together specify the activation levels of all
predecessors, which we can then use to derive retrieval probabil-
ities during the remember stage. The probability u(d) of retrieving
the dth predecessor is

uðdÞ ¼ eAðtdÞ=sPD
i ¼ 1 eAðtiÞ=s

; ðA3Þ

where A is activation from Eq. (A1) and s¼
ffiffiffi
6

p
σ=π, where σ is the

standard deviation of activation noise (Anderson and Lebiere,
1998). This equation normalizes the activation of any given target
by the total activation of all candidates, while amplifying activa-
tion differences with exponentiation. Greater values of s reduce
the amplifying effect of the exponentiation.

In sum, then, the remember stage retrieves the predecessor
that is most active at that moment. Eq. (A1) ranks predecessors by
their mean activation levels, with pred1 on top, pred2 next, and so
on. Eq. (A2) adjusts the age of predecessors, and thus the
differences between them in the activation ranking—without
changing the rank ordering itself—to reflect timing parameters of
the procedure. Eq. (A3) factors in the effect of activation noise,
which makes u(1)o1. Because pred2 is second in the ranking and
older predecessors continue to decay, assumptions about whether
predecessors decay during a lag after a trial will affect primarily
the rate at which pred2 intrudes and thus the rate of errors at
offset �1.

A.2.2. Successor activation and retrieval probability
Successors are defined relative to the predecessor retrieved

during the remember stage. The step coded in the retrieved
predecessor enters the system's focus of attention, and then
spreads activation to the steps that follow it in the task sequence,
with the most activation spreading to the immediate successor
and progressively less spreading to each later successor. We treat
the step sequence as a looped chain, with each step connected to
its successor by a one-directional associative link, and the last step
(L) connected to the first (U).

To formalize spreading activation we assume that each step
passes on a proportion g of the activation that reaches it (Anderson
and Pirolli, 1984). The activation spreading to succd is

BðdÞ ¼Wgd�1; ðA4Þ
whereW is the amount of activation spreading from the source (in
effect the retrieved predecessor), g is the proportion of activation
passed on from one link to the next, and d is the number of steps
from the source to succd in the UNRAVEL sequence.

Activation that has spread to a successor decays over time when
the activation source is “turned off,” as we assume happens during
an interruption. To represent this decay, we assume that the decay
rate at a successor is proportional to the amount of activation that
has spread to that successor, so that decay can be absorbed into the
W parameter. That is, after a decay period, the activation of a
successor is what it would have been without that decay period but
with a smaller W. Under this assumption, decay of spreading
activation during an interruption can be represented with a smaller
value of W for the post-interruption trial (as long as interruption
effects do not spill over past the post-interruption trial, which they
largely do not in this task; see Fig. 2). Accordingly, the model has
two source activation parameters, Wpost for the post-interruption
trial (position 1) and Wbase for baseline trials (positions 2 and later).

The probability v(d) of retrieving the dth successor is

vðdÞ ¼ eBðdÞ=sPD
i ¼ 1 eBðiÞ=s

; ðA5Þ

where B is from Eq. (A4) and s is the same activation noise
parameter as in Eq. (A3). Eq. (A5) transforms the activation
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ranking produced by Eq. (A4) into retrieval probabilities just as Eq.
(A3) transforms the activation ranking produced by Eq. (A1).

A.2.3. Predicted sequence error rates
Eqs. (A3) and (A5) define the retrieval probabilities of pre-

decessors and successors, respectively. It remains to transform
these retrieval probabilities to predicted error proportions at
different levels of the offset factor.

The probability of selecting the step at a given offset (including
the correct step) is the sum of the probabilities of different
possible “paths” through predecessor/successor pairs. For exam-
ple, the most likely path to selection of the correct next step is
through retrieval of pred1 followed by retrieval of succ1. Alterna-
tively, the remember stage may retrieve pred2 and the advance
stage may then retrieve succ2, with the second retrieval canceling
the error in the first.

Each step of the UNRAVEL sequence is represented once as a
predecessor and once as a successor, so that in principle any step
can be the product of either stage and contribute to errors at any
offset. Thus, the index variable d for predd and succd ranges from
1 to D¼7. To illustrate, if the system has just performed step U,
then pred1 would be U and pred7 would be L. If pred1¼U is
retrieved during the remember stage, then succ1 would be N and
succ7 would be U. Larger values of d “wrap” in the mapping to the
offset of the behavioral error. For example, pred1 followed by succ4
generates a þ3 error, but pred1 followed by succ5 generates a �3
error, by succ6 a �2 error, and by succ7 a �1 error.

An important simplifying assumption concerning predecessors
is that the system has performed the last D steps correctly. As we
noted in Section 5.4, ideally we would have represented the
possibility of second-order errors in which a sequence error
occurred on a previous trial and the control code from that trial
is retrieved in error during the remember stage on the current
trial. However, we found that in a closed-form model it was not
tractable to include all such contingencies, so we represent only
the most likely scenario as context for performance on the current
trial, namely that previous trials were performed correctly.

Under these operating principles, the probability of selecting
the correct next step is the sum of the probabilities of the different
possible predecessor/successor pairs—that is,

pð0Þ ¼
XD

d ¼ 1
uðdÞvðdÞ; ðA6Þ

where 0 signifies the correct next step (i.e., 0 steps skipped) and d
is the distance skipped backward in the remember stage and
forward in the advance stage. The summation over D terms reflects
the fact that each step is represented once as a predecessor and
once as a successor.

The probability of selecting an incorrect step—that is, the prob-
ability of a behavioral sequence error—follows the same logic. For
example, the most probable path to a þ1 error is through pred1 and
succ2, but another path is through pred2 and succ3. The total probability
is pðþ1Þ ¼ uð1Þvð2Þþuð2Þvð3Þþ…þuðDÞvð1Þ, where the last term is
for the path through predD and succ1 (e.g., if the just-performed step
was U, then predD is N and its succ1 is R). Similarly, the total probability
of a �1 error is pð�1Þ ¼ uð2Þvð1Þþuð3Þvð2Þþ…þuð1ÞvðDÞ. General-
izing the algebra, the probability of a þn error is

pðþnÞ ¼
XD

d ¼ 1
uðdÞv f ðn; d;DÞ� � ðA7Þ

and the probability of a -n error is

pð�nÞ ¼
XD

d ¼ 1
u f ðn;d;DÞ� �

vðdÞ; ðA8Þ

where f ðn; d;DÞ ¼ 1þ d�1þnð Þ mod D
� �

. The probabilities p(�3), p
(�2), p(�1), p(þ1), p(þ2), and p(þ3) are the model values for the
proportion of sequence errors at offsets �3, �2, �1, þ1, þ2, and þ3,
respectively.

Although the model includes all possible paths for all offsets,
the most probable paths are those through either pred1 or succ1,
and these drive the model's account of empirical data. For
example, if the remember stage yields pred2, the advance stage
is most likely to yield succ1, so the most likely behavioral outcome
is a �1 error, as we have addressed at length. Thus, in discussing
the different model variants in Section 4, which effectively differed
in the probability of pred2 intruding after a lag, we focused on
predicted changes in the error rate at offset �1 because those are
most likely.

A.2.4. Adjustments for the no decay and partial decay models
The no decay and partial decay versions of the model involve

adjustments to Eq. (A2). In the no decay version (Section 4.3), we
delayed by time L the moment at which pred1 starts to decay, so it
remains fully activated during the lag. Two adjustments were
necessary for Eq. (A2). First, pred1 in the lag condition is L seconds
younger here than in Eq. (A2), which is to say that t1; lag ¼
t1; lag; Eq: 2�L¼ t1; nolag; Eq: 2. Second, for each d41, predd in each
timing condition is L / 2 seconds younger here than in Eq. (A2), or
td ¼ td; Eq: 2�L=2, because half the time the trial governed by predd
was followed immediately by a lag, during which predd did not decay.

In the partial decay version (Section 4.4), pred1 decays during
the lag by an amount determined by a new free parameter Y that
represents the delay in onset of decay (in seconds). There were
again two adjustments necessary for Eq. (A2). First, in the lag
condition, pred1 is Y seconds younger in this model than in Eq.
(A2), or t1; lag ¼ t1; lag; Eq: 2�Y . Second, for each d41, predd in each
timing condition is Y / 2 seconds younger here than in Eq. (A2), or
td ¼ td; Eq: 2�Y=2, because half the time the trial governed by predd
was followed immediately by a lag, during which predd started to
decay after Y seconds.

A.3. Modeling Procedure and parameter estimates

We used maximum likelihood estimation to fit the model to
the data. The likelihood function was the binomial distribution,

Likelihood¼ n

k

� �
pk 1�pð Þn�k; ð9Þ

where k is the number of sequence errors, n is the number of trials,
and p is the probability of an error predicted by Eqs. (A7) or (A8).

We fit each model to each participant's data. To do this we
estimated five parameters (E, s, Wpost, Wbase, and g) from 72
observations, one per cell of the 2 (timing)�6 (position)�6
(offset) design. For two of the models we estimated a sixth
parameter (either Y or a second s).

The estimation procedure was the non-linear optimization
method in the Solver add-in in Microsoft Excel. We used Excel
for Mac 2004, running under the Rosetta emulation included with
Mac OS 10.6, because in the version of Excel current at time of
writing (Excel for Mac 2011) the Solver does not work correctly
when called from a loop in Visual Basic.

Table A1 gives mean estimated values of free parameters for
the four models. The s parameter (both s parameters, in the model
with two) was constrained to take values no smaller than 0.001;
without this bound the estimation process would in a few cases
generate s¼0, for which the model is undefined. The other
parameters were constrained to take only non-negative values.
The seed values for the free parameters for each model for each
individual participant were the maximum-likelihood estimates
derived by fitting that model to the aggregate data.

The response latency parameter R (M¼2.093 s) was bound for
each participant with the mean of 5�2¼10 median response
latencies on correct trials for that participant, one for each of
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positions 2–6 in each timing condition. The interruption duration
parameter I (M¼20.424 s) was bound for each participant with the
median of all that participant's interruption durations.
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