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Abstract

We conducted two in vivo studies to explore how scientists respond to anomalies. Based on prior

research, we identify three candidate strategies: mental simulation, mental manipulation of an image,

and comparison between images. In Study 1, we compared experts in basic and applied domains

(physics and meteorology). We found that the basic scientists used mental simulation to resolve an

anomaly, whereas applied science practitioners mentally manipulated the image. In Study 2, we com-

pared novice and expert meteorologists. We found that unlike experts, novices used comparison to

address anomalies. We discuss the nature of expertise in the two kinds of science, the relationship

between the type of science and the task performed, and the relationship of the strategies investigated

to scientific creativity.

Keywords: Anomalies; Creativity; Diagrammatic reasoning; Expertise; Mental models; Mental

simulation; Scientific reasoning; Causal reasoning

1. Introduction

An anomaly, loosely defined, is any phenomenon that deviates from a common form,

that displays inconsistency with what is expected, or that is generally considered

‘‘odd’’ or ‘‘peculiar’’ in some way. Psychologists studying scientific reasoning have

placed a great deal of emphasis on anomalies. Kuhn proposed that anomalies can lead

to a rethinking of current theoretical understanding within an entire field, for example,

the shift from the Ptolomaic to the Copernican view of the universe (Kuhn, 1970).

Kulkarni and Simon (1988) suggested that investigating an anomalous result led Hans

Krebs to discover the urea cycle. Dunbar (1995) has shown that scientists attending to

Correspondence should be sent to Susan Bell Trickett, 1480 S. Columbine St., Denver, CO 80210. E-mail:

sbtrickett@aol.com

Topics in Cognitive Science 1 (2009) 711–729
Copyright � 2009 Cognitive Science Society, Inc. All rights reserved.
ISSN: 1756-8757 print / 1756-8765 online
DOI: 10.1111/j.1756-8765.2009.01036.x



anomalies in the daily grind of laboratory life are more likely to make progress than

those who ignore them. Overall, anomalies can help advance science at a number of

different levels.

The focus in these prior studies has been the role of anomalies in scientific discovery.

However, there is a different kind of science that uses general scientific understanding of

phenomena to build predictive models of particular situations in order to solve practical,

rather than theoretical, problems. The goals of such applied science are different from those

of basic science. In basic science, the goal is to develop, refine, and advance general theoret-

ical scientific understanding. In contrast, in many applied sciences, such as in practicing

meteorology, medicine, and nutrition, for example, the goal is to build models of specific

situations to support decision making.1

Because of the different goals of basic and applied science, anomalies may serve dif-

ferent functions, and consequently, may be treated differently. Whereas anomalies repre-

sent an opportunity for discovery in basic science, in applied science they may function

as a nuisance to be resolved; in devising a model of a specific problem to support deci-

sion making, there is little room for ambiguity. Moreover, the general scientific theories

are not called into question in applied science; only the applications of general theories

to the specific situation can be fruitfully questioned. Nonetheless, anomalies in both

types of science must be attended to and resolved. The fundamental question we inves-

tigate in this paper is: ‘‘Are anomalies treated differently in basic and applied

science?’’

Previous work has shown that basic scientists are likely to attend to anomalies rather than

ignore them, suggesting that scientists are likely to enter a period of uncertainty when anom-

alies are encountered. It has also been shown that when basic scientists are uncertain, they

use conceptual simulations more frequently than or as frequently as any other strategy (other

than focusing on the data) (Trickett & Trafton, 2007). Christensen and Schunn (2009) have

shown a similar use of mental simulation among design scientists (engineers) during periods

of uncertainty.

It is possible that strategy differences in the handling of anomalies are more locally

grounded, that is, that they are driven by the task being performed rather than the type of

science being performed. The distinction we have drawn between basic and applied science

is, in fact, more likely to be a continuum than a strict dichotomy. Some applied cases might

involve significant new conceptual challenges that require the generation of new knowledge.

For example, Pasteur’s work assisting industrialists who were trying to make alcohol from

beets—an applied-science task—led to the identification of microorganisms responsible for

fermentation and to an understanding of how they function—a theoretical advance (Stokes,

1997). In cases where applied science practitioners have to seek causal explanations, they

might behave more like theoreticians. In general, however, we anticipate that basic scientists

are more likely to engage in understanding deep process, whereas applied science practitio-

ners are more likely to be seeking a practical solution to a problem. Consequently, we begin

our investigation by observing the response to anomalies of both basic scientists and applied

science practitioners.
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1.1. Conceptual simulations

By conceptual simulation, we mean a common reasoning strategy by which a person ima-

gines a situation and mentally plays out the implications in order to ‘‘see what happens.’’

As a famous example, Galileo imagined what would happen if two rocks of different

weights fell as they were lashed together by a rope, and mentally determined that both

would fall at the same rate.

A conceptual simulation is a form of mental simulation, or ‘‘what if’’ reasoning that con-

sists of three phases. It begins with an initial representation of a system or part of a system.

This representation is (mentally) modified by a series of mental operations in order to pro-

duce a simulation ‘‘run.’’ Two key features of this ‘‘run’’ are that it is (a) hypothetical, that

is, does not require actual physical behaviors be enacted during the simulation or a currently

present start state, and (b) that it leads to an altered representation of the phenomenon itself.

This final representation, or ‘‘result’’ can be mentally inspected to draw inferences from it

about the validity of the hypothetical conditions involved in the ‘‘run.’’ Table 1 shows an

Table 1

Examples of conceptual simulation (CS) from astronomy and spatial transformations (ST) (in italics) from

meteorology

Utterances Code Explanation

Look at the little sort of, er, sort of intrusion

of the velocity field here…What can it

mean?

Scientist looks at image of velocity

contours

In a perfect sort of spider diagram CS Scientist is not looking at a spider

diagram. This is a reference to new

representation (spider diagram)

if you looked at the velocity contours without
any sort of streaming motions, no, what I’m
trying to say is, um, in the absence of
streaming motions

CS continued Reference to transforming

representation (mentally removing

existing streaming motions)

you’d probably expect these lines here
[gestures] to go all the way across, you
know, the ring

CS continued Reference to result (sees what happens)

so that would lead me to believe, based on

this pattern

Looks at upper air map

based on the location of these guys here Looks at upper air map

we’re going to have good southwesterly flow
over these parts of South Carolina [points to

location on map]

ST Looks at different map; mentally adds

southwesterly flow inferred from

upper air map, not marked on current

map

more of a maritime influence here [points] ST Mentally adds area of maritime

influence (not marked on map)

this is going to be high here [points] ST Mentally adds high (not marked

on map)
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example of conceptual simulation (see Trickett & Trafton, 2007 for more on conceptual

simulation and its somewhat complex relationship to mental models).

There are both costs and benefits to using conceptual simulations. On the cost side, it

places heavy demands on working memory and requires significant domain knowledge both

to play out the steps in the ‘‘run’’ and to draw valid inferences from the result. Because it is

a qualitative reasoning strategy, its results are likely to be incomplete or imprecise (Forbus,

1997). On the other hand, as a qualitative reasoning strategy, it allows the reasoner to reason

with partial knowledge, and hence to accommodate ambiguity (Forbus, 1997), which may

be especially useful in situations of uncertainty (Christensen & Schunn, 2009). Furthermore,

conceptual simulation provides a ‘‘quick and dirty’’ method of evaluating different scenar-

ios that is cheap compared with the cost of actually constructing such alternatives (e.g.,

running an experiment or building a computational model).

These characteristics of conceptual simulation are likely to be particularly relevant for

basic science, because they map well to its goals. Manipulating representations of phenom-

ena meshes with the need to understand such phenomena within a theoretical framework.

Inspecting the result of such manipulations can allow inferences to be made about underly-

ing causes, by evaluating whether the conditions specified in the ‘‘run’’ are valid. The very

act of generating the simulation requires the scientist to specify the relationship between

theory and data, at least within the constraints imposed by the conditions of the simulation.

Finally, the capacity of conceptual simulation to accommodate ambiguity makes it espe-

cially appropriate for scientists operating under significant uncertainty. We hypothesize,

then, that basic scientists will use conceptual simulation after an anomaly.

In contrast, because conceptual simulation maps well to the investigation of underlying

causes and the relationship between theory and data, and because these goals are for the

most part not applicable to applied science, we hypothesize applied science practitioners

will use fewer conceptual simulations following the detection of an anomaly. The goals of

applied science are less likely to be supported by a strategy whose strength is to allow for

situational ambiguity. In meteorology, for example, there may be a great deal of ambiguity

in the data from which the scientist must construct a forecast, but the goal is to resolve that

ambiguity in order to make a specific prediction about the weather. Strategies other than

conceptual simulation are likely to support that goal.

We have found that, particularly for visual domains, in situations of informational

uncertainty scientists often mentally transform the visualization that contains the source

of their uncertainty (Trickett, Trafton, Saner, & Schunn, 2007). By mentally transforming

the visualization, the scientist is able to add his or her own representation of uncertainty

by mentally manipulating individual aspects of data that may be misrepresented (e.g., two

discrepant displays).

1.2. Spatial transformations

A common test of spatial ability requires people to match a target figure consisting

of stacked cubes with a rotated version of the target, such as the stimuli used by Shepard

and Metzler (1971). In order to perform this task, one has to mentally transform the spatial
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display of either the target or the candidate matching configurations. This mental rotation

activity is a form of spatial transformation.

In domains that use complex visualizations, the most frequent strategy by which mental

transformations happen is spatial transformations. Spatial transformations occur when a spa-

tial object is transformed from one mental state or location to another mental state or loca-

tion. They take place in a mental representation that is an analog of physical space. They

can be performed purely mentally with an imagined object or ‘‘on top of’’ an existing visu-

alization. Common examples of spatial transformations are creating or modifying a mental

image, mental rotation (Shepard & Metzler, 1971), animating a static image (Bogacz &

Trafton, 2005; Hegarty, 1992), transforming a two-dimensional into a three-dimensional

image (St. John, Cowen, Smallman, & Oonk, 2001), and making comparisons between dif-

ferent views (Kosslyn, Sukel, & Bly, 1999; Trafton, Trickett, & Mintz, 2005). Table 1

provides examples of spatial transformations.

Because the goals of applied science are practical—to understand a specific set of circum-

stances and to use that understanding in problem solving—we hypothesize that applied sci-

ence practitioners will resolve anomalies using spatial transformations. By mentally

manipulating features of the display, these scientists can build a more complete picture of

the data to use in their problem solving—for example, in the meteorological domain, a

meteorologist might mentally need to redraw a weather map by placing a front in a different

location.

Although they are related, in that they both involve mental manipulation of a representa-

tion, conceptual simulation and spatial transformation are distinct. Comparing the examples

in Table 1 highlights this difference. The spatial transformations are discrete units. Even

when they occur in sequences, they remain individual manipulations. Thus, in the example

in Table 1, the meteorologist looks at an upper air map and uses that representation to

make inferences about weather features (air flow, maritime influence, areas of high air

pressure) at surface level. He then mentally adds those individual features to the surface

level map. Conceptual simulations, on the other hand, are more complex, involving

sequences of manipulations that are not only interrelated but also build on each other to

create a completely new mental representation that is several steps removed from the origi-

nal. Conceptual simulations not only involve this series of interrelated spatial transforma-

tions that comprise a simulation ‘‘run,’’ but in addition they entail both a starting

representation and an inspectable ending state that reflects the changes to the original repre-

sentation engendered by the simulation itself. Thus, the astronomer illustrated in Table 1

begins by looking at a representation of velocity contours overlaid on a galaxy, which dis-

play anomalous ‘‘intrusions.’’ He thinks that these might be caused by streaming motions.

He constructs a mental representation of the theoretical appearance of the velocity contours

(‘‘a perfect spider diagram’’). He mentally deletes any streaming motions from this repre-

sentation (‘‘if you looked at the velocity contours without any sort of streaming motions’’)

and identifies how the lines would, then, hypothetically appear (‘‘you’d probably expect

[them] to go all the way across the ring’’); that is, he is able to ‘‘see what happened.’’

Thus, although conceptual simulations are likely to include spatial transformations, a series

of spatial transformations alone does not constitute a conceptual simulation. The starting
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representation, the changed final state, and, critically, the simulation run must all be present

for a conceptual simulation to occur.

Whereas some spatial transformations involve mentally manipulating an aspect of the

display so that a new mental image is generated, others involve only comparing two images.

For example, a meteorologist might look at two maps displaying data generated by different

weather models, each predicting a front in a different location, and compare the differences.

We call the former type pure spatial transformations, in contrast to the latter, which we term

comparison spatial transformations.
In comparison spatial transformations, the images might be two external images, two inter-

nal images, or an internal and an external image. These comparisons are considered spatial

transformations because they involve mentally overlaying one image on top of another

(Trafton et al., 2005). (Other types of comparisons, such as comparing numbers, do not

involve spatial working memory and are not considered spatial transformations.) When

encountering an anomaly, it is likely that scientists will change the display in order to view

the anomaly from a different perspective and make comparisons between the different views.

In addition, both conceptual simulations and pure spatial transformations result in a new men-

tal image that invites comparison with the displayed image, in order either to make inferences

or to evaluate the display. Consequently, we anticipate that both basic scientists and applied

science practitioners will use comparison spatial transformations in responding to anomalies.

We conducted an in vivo study to investigate how scientists respond to anomalies. We

compared expert basic scientists and applied science practitioners in order to investigate the

differences between these two types of science. We hypothesized that, whereas both groups

would use comparison spatial transformations, the basic scientists would use more concep-

tual simulations than applied science practitioners, and that the applied science practitioners

would use more pure spatial transformations than basic scientists.

2. Study 1

2.1. Method

We used Dunbar’s in vivo methodology for on-line observation of scientific thinking, in

which participants perform their regular tasks and the experimenter observes and records

their verbalizations (Dunbar, 1995, 1997). We collected concurrent verbal protocols

(Ericsson & Simon, 1993). According to Ericsson and Simon, the verbal stream can offer a

window onto the cognitive processes in use. In this way, we were able to obtain authentic

data about how, as Dunbar puts it, ‘‘scientists really reason.’’ We used the verbal protocols

to identify anomalies and the strategies scientists used to deal with them.

We collected data in three domains, two basic sciences (astronomy and computational

fluid dynamics) and one applied science (meteorology). We observed four sessions of basic

science, involving three expert scientists, and five sessions of applied science, involving five

expert meteorologists. All the basic scientists had earned their Ph.D. more than 6 years

previously; consequently, each had at least 10 years of experience. The meteorologists were
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Navy forecasters, each with over 10 years experience. Ten years of experience is a common

threshold for using the term ‘‘expert’’ (Hayes, 1985).

The task for both groups was to carry out their normal work. For the basic scientists, the

task involved analyzing radio telescope data about a galaxy, analyzing computer simulation

data from a model of submarine motion, or analyzing data from an experiment involving

laser pellets. For the meteorologists, it meant creating either a local or a long-term regional

weather forecast.

Participants were trained to give talk-aloud verbal protocols. All sessions were vid-

eotaped. The sessions were later transcribed and segmented according to complete

thought (see Trickett & Trafton, 2007; for more on the in vivo methodology). Data

from the basic scientists was a subset of the data presented in Trickett and Trafton

(2007).

2.1.1. Coding scheme
2.1.1.1. Inter-rater reliability: One coder coded all the protocols. A second coder, blind to

the hypotheses under investigation, coded a subset of the data in order to establish inter-rater

reliability, which is reported for each code below.

2.1.1.2. Anomalies: Because of differences in the two kinds of science, we coded anomalies

differently for the basic and applied science data. For the basic science, we first identified

instances of the scientists noticing a phenomenon of interest. We then identified which phe-

nomena were considered anomalous by the scientists, according to the following criteria: (a)

the scientist made an explicit verbal reference to the fact that something was anomalous or

expected; (b) if there was no explicit reference, domain knowledge was used to determine

whether a phenomenon was anomalous;2 (c) a phenomenon might be associated with (i.e.,

identified as similar to) another phenomenon that had already been established as anoma-

lous; (d) a phenomenon might be contrasted with (i.e., identified as unlike) another phenom-

enon that had already been established as expected; (e) a scientist might question a feature

of a phenomenon (see Table 2).

For the anomaly coding for the basic science, the second coder coded 10% of the data,

and agreement was good (Kappa = 0.77).

Table 2

Coding of phenomena as anomalous or expected in basic science

Criterion Code Example

Explicit Anomalous What’s that funky thing….That’s odd
Domain

knowledge

Expected You can see that all the H1 is concentrated in the ring

Association Anomalous You see similar kinds of instrusions along here

Contrast Expected That’s odd…As opposed to these things, which are

just the lower contours down here

Question Anomalous I still wonder why we don’t see any H1 up here in

this sort of northern ring segment?
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This coding scheme was not appropriate for the meteorology domain, where the data

were forecast model data, and was not questioned per se by the meteorologists. Instead, we

identified discrepancies in the data, where two or more models disagreed or where a model

disagreed with the meteorologist’s expectations (see Table 3). These discrepancies were

explicitly mentioned in the protocols and were straightforward to identify; consequently, we

did not double-code for anomaly identification here.

2.1.1.3. Conceptual simulations: We coded all utterances pertaining to an anomaly for con-

ceptual simulations and spatial transformations. We coded conceptual simulations according

to the coding scheme established in Trickett and Trafton (2007). A conceptual simulation

spans several utterances and consists of a specific, three-step sequence (see Table 1):

1. reference to a new representation of a system or mechanism;

2. reference to transforming that representation spatially, in a hypothetical manner;

3. reference to a result of the transformation (seeing what happens).

For the conceptual simulation coding, the second coder coded 33% of each the basic

science data protocols and agreement was good, kappa = 0.75.

2.1.1.4. Spatial transformations: We coded spatial transformations according to the coding

scheme established in Trafton et al. (2006), that is, any time a participant mentally trans-

formed one spatial object from one state or location into another. Kappa for this coding was

0.79.

We further categorized the spatial transformations as either pure or comparison spatial

transformations (see Table 4). Pure spatial transformations involve a mental manipulation

of a single image, without reference to a second image. Comparison spatial transformations

involve an explicit or implicit comparison between two images.

Table 3

Coding of phenomena as anomalous or expected in meteorology (indication of anomaly in italics)

Utterance Anomaly

The old watch had put 35 to 40

saying that it would sustain off of the coast of Greenland

I don’t see that Discrepancy between previous data

(old watch) and current data

But I guess the ETA kinda has some moisture there too, so

but not quite as much Discrepancy between models

Hmm, and then the GFS has, has much less Discrepancy between models

Umm, looks like there’s gonna be some precip coming

through a little later in the week

like couple days through

like 42 hr

so maybe there will be some precip in the forecast

unlike what I thought before Discrepancy between model and

forecaster’s expectation

718 S. B. Trickett, J. G. Trafton, C. D. Schunn ⁄ Topics in Cognitive Science 1 (2009)



2.2. Results

We coded 1,449 on-task utterances for the basic scientists and 2,202 on-task utterances

for the applied science practitioners (utterances irrelevant to data analysis were excluded).

All participants found anomalies, 20 in the basic science and 25 in the applied (five per ses-

sion in both domains). In the basic science, some anomalies were so closely related that the

scientists referred to them together; consequently, we combined them, resulting in 17 basic

science anomalies.

The 10 utterances before each anomaly were coded to explore baseline differences in

conceptual simulations and spatial transformation. A one-way analysis of variance showed

that there were no differences in this base-rate use of any of these strategies between the

basic and applied sciences, all Fs < 1.

Second, for each strategy we conducted a mixed-factor anova with timing (before or after

the anomaly) as the within-subjects factor and group (basic or applied science) as the

between-subjects factor.3 For conceptual simulation, more conceptual simulations were used

after an anomaly than before it, F(1, 7) = 25.88, p < .01. Also, basic scientists used more

conceptual simulations than applied science practitioners, F(1, 7) = 8.43, p < .05. Fig. 1A

shows the significant interaction, F(1, 7) = 18.53, p < .01.

Table 4

Coding of spatial transformations as ‘‘comparison’’ or ‘‘pure’’

Utterance Code

Yeah, OK, so they have precip coming in

48 hr from now

Let me try to go back to GFS

and see what they have

Well, OK, they don’t differ Comparison (two model maps of precipitation

compared)

They have a little bit at 54

even a little bit

and they have that storm passing further to the south Comparison (two model maps)

You also have a 12 max 14,

winds are not supporting that

The next chart has it moving down further to the south Pure (adds representation of high sea area

to current chart, but places it further south

as second chart suggests)

Here’s the low

and here’s the warm front

see it right here

it comes around, comes around, comes around Pure (mentally adds movement to static representation)

it comes around here Pure (mentally adds movement to static representation)

see it dips like that Pure (mentally adds movement to static representation)

that’s exactly what that thing’s doing

You can see the high

See how it’s going here Pure (mentally adds movement to static representation)

And the front’s back in here Pure (mentally adds front to map it is not represented)
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More pure spatial transformations were used after an anomaly than before it,

F(1, 7) = 9.82, p < .05 (see Fig. 1B). The use of pure spatial transformations by the two

types of scientist did not differ, F(1, 8) = 2.7, p = .14; nor was there a significant inter-

action, F(1, 7) = 3.07, p = .12.

Comparison spatial transformations did not differ in terms of timing, F < 1, or domain,

F < 1 (see Fig. 1C).

Because there were two different domains in the basic science, we examined the data for

each session to make sure that the pattern of results was the same for each domain. For both

the astronomy and computational fluid dynamics domains, each scientist used more

Fig. 1. Mean number (with standard error bars) of conceptual simulations, spatial transformations, and compari-

son spatial transformations before and after each anomaly for applied and basic science.

720 S. B. Trickett, J. G. Trafton, C. D. Schunn ⁄ Topics in Cognitive Science 1 (2009)



conceptual simulations after an anomaly than before and the same (one session) or more

(three sessions) pure spatial transformations after than before. Use of comparison spatial

transformations was mixed, with more used after the anomaly in two sessions, and more

used before in the other two.
Taken together, these results suggest that both conceptual simulation and pure spatial

transformation are strategies scientists use to respond to anomalies, since for both these

strategies there was greater use after the anomaly than before it. In contrast, the use of com-

parison spatial transformations was approximately the same before as after an anomaly, and

therefore it does not appear to be especially associated with the scientists encountering an

anomaly.

The results also suggest that there are procedural differences in how experts in basic and

applied science deal with anomalies. Before an anomaly, both groups use conceptual simu-

lation, pure and comparison spatial transformations equally and infrequently. However,

after anomaly, in basic science, experts use conceptual simulation, whereas in applied sci-

ence, they tend to use pure spatial transformations. Although the difference in use of pure

spatial transformations by the applied science practitioners did not reach statistical signifi-

cance, the applied science practitioners used three times as many pure spatial transforma-

tions following an anomaly as the basic scientists (4.65 vs. 1.5), suggesting there was a

strong trend in this direction. (The lack of statistical significance is likely caused by the lack

of power frequently experienced in in vivo research.) Not surprisingly, given the visual nat-

ure of the data in this study, both basic scientists and applied science practitioners make

equal, albeit sparse, use of comparison spatial transformations (e.g., by comparing different

visualizations of the anomaly).

How did the scientists use these different strategies to help them resolve the uncertainty

fostered by the anomaly? Table 5 shows an example of a conceptual simulation following

an anomaly in one of the basic science protocols. The scientist had built and run a computa-

tional model of the flow of fluid around a submarine and was comparing the model’s output

with experimental data. The scientist was quite confident that there would be a good match

between model and data, but to his dismay the match was ‘‘not even close.’’ He was baffled

Table 5

Example of conceptual simulation (CS) used to resolve anomaly in basic science (CS in italics)

Utterances Coding Explanation

It is conceivably possible that this curve is floating
around all over the place, and what they’re
showing is an average (scientist is looking at a

graphical representation [a curve] that represents

the turbulence)

CS Reference to new representation

(this curve)

so if this thing is really floating around that much,
just up and down, and I’m at the extreme end, and
if I average all of this stuff,

CS continued Reference to transforming

representation

then I may actually still get the curve right CS continued Reference to result

(sees what happens)
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as to the cause of the discrepancy, declaring on several occasions, ‘‘I have no idea.’’ He pro-

posed the hypothesis that the problem lay with the experimental data: ‘‘It is conceivably

possible that this curve (a flow curve represented graphically on the visualization) is floating

around all over the place, OK, and what they’re showing is an average.’’ He then used con-

ceptual simulation to generate the implications of this hypothesis for the discrepancy: ‘‘So

if this thing is really floating around that much, just up and down, and I’m at the extreme

end, and if I average all of this stuff (computational data), then I may actually still get the

curve right.’’ Apparently, he constructed a mental representation of the hypothetically aver-

aged computational data and compared it with the experimental data, because he concluded:

‘‘But I don’t think that’s right. I just don’t see it, right off hand’’—even if he performed the

necessary averaging operations, the model would still not match the experimental data.

In another, similar example from a different basic science protocol, the scientists were

jointly trying to understand an anomalous ‘‘blob’’ that had been puzzling them for some

time in the displayed image. (See Table 6 for the details of this example.) They had consid-

ered (and rejected) several hypotheses, when one scientist recalled an earlier model he had

run. In a complicated sequence of steps, he reconstructed relevant features of that model

and mapped them to the current data concerning the blob, reinterpreting these data in the

light of the model data. He imagined that the puzzling data might be ‘‘a completely different

sort of kinematic population’’ and mentally redrew the image with two groups of stars

‘‘bending’’ in different directions. He then inspected the result of this transformation and

found a separation similar to what he had observed in his model data. This match between

previously viewed model data and the mentally transformed current data led him to

conclude that he may have resolved the mystery surrounding the anomalous blob.

These examples are typical of the way in which conceptual simulation functioned for the

basic scientists. It allowed them to mentally ‘‘play out’’ in detail the implications of some

Table 6

Example of conceptual simulation (CS) used to resolve anomaly in basic science (CS in italics)

Utterances Scientist 1 Coding Explanation

OK, OK, one of the things that show up in at least

the preliminary models that I did run are

this thing sort of breaks apart and this thing sort of

goes…
so you have a separation of the ring into a, an outer

arm and another arm

so this could be actually be a completely different
sort of kinematic population

CS Reference to new representation

(a completely different sort of

kinematic population)

This could actually, this, these stars could be
bending inward

CS contd Reference to transforming representation

While these stars are bending outward CS contd Reference to transforming representation

So you actually have a separation of the two like
that

CS contd Reference to result

That’s where the blob could really be coming from Conclusion regarding anomaly
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possibility, assuming that it was true, and thus to determine the outcome of that mental sim-

ulation. This process allowed the scientists to draw inferences about the data in relation to

the possible explanation they were considering.

A comparable example of the applied science practitioners using spatial transformations

to resolve anomalies is illustrated in Table 7. The meteorologist notices that the model data

shows a temperature increase that he does not believe is accurate, creating a discrepancy

that must be resolved. He performs a series of mental adjustments to the forecast map, thus

adding his own representation to the map that he thinks is incomplete. These adjustments

are not hypothetical, except insofar as they are not literally drawn on the image, nor is there

any simulation involved. Instead, he adds missing information to the data representation.

From this mentally redrawn map, the meteorologist is able to ‘‘read off’’ the information

that, with these weather features in place, the temperature will be lower than the current

map suggests, thus resolving the anomaly and justifying his decision to disagree with the

model’s prediction.

Thus, in this study, we found differences between the two groups of scientists. However,

our results do not fundamentally address the source of these differences—whether they are

due to the type of science or the type of task undertaken. There are at least two ways to think

about how the strategy might be affected by the task. First, it is possible that discrepancies

between hypothesis and data are more likely to be resolved by conceptual simulation,

whereas discrepancies between two sets of data are more likely to be resolved by spatial

transformation. In this case, basic scientists with two conflicting datasets would be expected

to use spatial transformation, and applied science practitioners attempting to resolve a theo-

retical discrepancy would be more likely to use conceptual simulation. Unfortunately, there

are not enough instances in our dataset of this type of interaction between domain and task

to test this hypothesis.

A second avenue of interest is to consider the role of expertise in the use of strategy.

If the strategy is directed by the task—or even the domain—it is possible that any problem

Table 7

Example of applied science practitioner using spatial transformations (ST) (in italics) to resolve anomaly

Utterance Code Explanation

They really want to drive some warm air in there

I just can’t buy that Anomaly Discrepancy between model data and

forecaster’s expectation

What did I do for the 5th?

82

I’m gonna stay with 82 there

even though the thickness now shows it’s in here

the front is back in here somewhere ST Mentally adds front to map (not represented)

you’ve got warm moist air ST Mentally adds weather feature (not represented)

you’ve got the high over here that’s off Bermuda ST Mentally adds high pressure (not represented)

and you got this one in here… ST Mentally adds weather feature (not represented)

…so the temperature, the max temperature’s

going to be pushed down

Resolves anomaly: justifies forecasting lower

temperature than model predicts
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solver would approach the task in this manner. However, it seems likely that there are par-

ticularly useful ways of solving the task that perhaps require higher levels of skill and

knowledge in order to be implemented. In order to test this hypothesis, we conducted a sec-

ond study to examine expert ⁄ novice differences in one of the domains. The purpose of this

second study is to provide clarification about the use of the various strategies in the applied

domain.

3. Study 2

In order to investigate strategy differences between experts and novices, it is important

that both groups be asked to perform equivalent tasks; consequently, we restricted this study

to the meteorology domain. In this domain novices can be asked to perform the exact same

task as experts (create a weather forecast). At the same time, the task remains challenging

for experts.

Although both experts and novices are capable of performing the task, we predicted that

there would be differences in the strategies by which they did so. Specifically regarding the

two types of spatial transformation, we predicted that novices would use fewer pure spatial

transformations following an anomaly than the experts, because we hypothesized that this

strategy requires skill and knowledge to implement (Sims & Mayer, 2002). Comparison spa-

tial transformations also require some domain knowledge, because the scientist must be able

to discern which are the relevant points of comparison to be made. It is likely that novices

will have sufficient domain knowledge to focus their comparisons on relevant data and thus

to use comparisons effectively. Consequently, we predicted that the novices would use more

comparison spatial transformations than pure spatial transformations to handle an anomaly.

Since the expert meteorologists in Study 1 used conceptual simulation only rarely, we did

not expect to find significant use of this strategy by the novices.

Participants in this study were 10 undergraduate juniors or senior meteorology students

with 1 to 2 years experience making forecasts. In addition to coursework, all the students

regularly created forecasts for the campus weather site and participated in team-based

national forecasting competitions. We compared the new novice data with the data from the

expert meteorologists in Study 1.

The novices were asked to create a 3-day weather forecast. They performed the task in

the university weather center, using the tools that they regularly used. They were trained to

talk aloud while performing the task, and each session was videotaped, transcribed, and seg-

mented, as in Study 1. The verbal protocols were coded for anomalies (discrepancies), con-

ceptual simulations, and pure and comparison spatial transformations, as described earlier.

4. Results

The novices’ transcripts comprised a total of 2,340 utterances. They noticed a total of 23

anomalies, with each novice noticing at least one anomaly.
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As in Study 1, we established that there were no differences in the base-rate use of the

strategies of interest by experts and novices. We compared the use of conceptual simulation

and both types of spatial transformation during the 10 utterances before each anomaly. The

novices used no conceptual simulations at all, compared with a very slight use by the

experts (a mean of 0.067 per anomaly), F(1, 13) = 2.16, p = .17. Before an anomaly, nov-

ices and experts did not differ in their use of either pure spatial transformations (F < 1) or

comparison spatial transformations, F(1, 13) = 2.88, p = .11.

For conceptual simulation, pure spatial transformation, and comparison spatial transfor-

mation we conducted a mixed-factor anova with timing as the within-subjects factor and

expertise as the between-subjects factor. For conceptual simulation, the effect of timing was

marginal, F(1, 13) = 3.89, p = .07. Experts used more conceptual simulations than novices,

F(1, 13) = 6.48, p < .05. The interaction was marginal, F(1, 13) = 3.89, p = .07. Fig. 2A

shows these results. In fact the novices used no conceptual simulations at all, either before

or after the anomaly, and the experts’ use was quite low. The very small number of concep-

tual simulations overall in the applied science domain, even by experts, suggests that this is

not a particularly relevant strategy in this domain. The complete lack of conceptual simula-

tions among the novices suggests that when it is used, it is an expert strategy for which

novices lack the skill or knowledge.

For pure spatial transformations more pure spatial transformations were used after the

anomaly than before it, F(1, 13) = 17.35, p < .01. Experts used more pure spatial transfor-

mations than novices, F(1, 13) = 10.54, p < .01. Finally, the interaction between timing and

expertise was significant, F(1, 13) = 17.99, p < .01. As Fig. 2B suggests, the experts used

many times more pure spatial transformations than the novices after the anomaly, whereas

there was no difference in their rate of use before the anomaly. Fig. 2B also illustrates how

there was very little difference in the novices’ use of pure spatial transformations after an

anomaly (mean = 0.48) compared with before an anomaly (mean = 0.52). Overall, the

results suggest that pure spatial transformation is an important expert strategy for handling

anomalies in this domain.

For comparison spatial transformations, marginally more comparison spatial transforma-

tions were used after an anomaly than before it, F(1, 13) = 4.06, p = .06. The effect of

expertise was not significant, F < 1, and the interaction was not significant, F(1, 13) = 2.22,

p = .16. Although these results were not statistically significant, as Fig. 2C shows, the nov-

ices used many more comparison spatial transformations after an anomaly (mean = 1.8)

than before (mean = 0.03), suggesting at least a trend on their part to use comparison spatial

transformations when encountering an anomaly. The experts, in contrast, used a similar

number of comparison spatial transformations before and after an anomaly.

Overall, these results suggest expert applied science practitioners use pure spatial trans-

formations but not conceptual simulation when they encounter an anomaly. Novices, how-

ever, used many times more comparison spatial transformations after an anomaly. Coupled

with the relative lack of pure spatial transformations by novices, this result suggests that the

novices were sensitive to anomalies but focused on further identifying features of the anom-

aly by comparing different representations of the data, rather than on actually resolving the

anomaly. Possibly the novices lacked the knowledge and skill to determine which, if either,
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of the discrepant models was likely to be more accurate and thus got ‘‘stuck’’ on identifying

aspects of the discrepancy itself.

5. General discussion

We have identified three distinct, albeit related, problem-solving strategies used in scien-

tific reasoning, particularly among scientists using complex visual displays of data: concep-

tual simulation, pure spatial transformation, and comparison spatial transformation, and we

Fig. 2. Mean number (with standard error bars) of conceptual simulations, spatial transformations, and compari-

son spatial transformations before and after each anomaly for expert and novice applied science practitioners.
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have explored their role in addressing anomalies among different types of scientist with

different levels of expertise.

The results of these two studies show differences in the way anomalies were handled by

both basic scientists and applied science practitioners. The expert basic scientists used con-

ceptual simulations, whereas the expert applied science practitioners used pure spatial trans-

formations. However, it is not clear whether the different strategies were due to the type of

science or the task undertaken. The results of Study 2 clarify some aspects of this difference:

Novices in applied science seem to lack the expertise to perform pure spatial transforma-

tions and instead use comparison spatial transformations. The tasks examined in Study 1

were not such that any problem solver would have responded in the ways that were observed

in the experts, but rather some level of expertise was required to produce the observed

pattern (at least for the applied science task).

Another way to interpret this difference between expert and novice behavior is that

novices focus on the data representations themselves, whereas experts move beyond the

data. Both the basic scientists and the applied science practitioners mentally manipulated

the visual image. The applied science practitioners did this by means of spatial transforma-

tions, mentally redrawing a visualization to make it a more accurate representation. The

basic scientists used conceptual simulation, constructing whole scenarios to allow them to

quickly test hypotheses they developed about the anomaly.

There are several possible reasons for these strategy differences. One reason, as discussed

above, may be the different goals of the different tasks. Experts by definition use the appro-

priate strategy for their task; consequently, we conclude that conceptual simulation, while

useful in basic science, is less applicable to the demands of applied science.

Another possibility is that the type of anomaly likely to be encountered is different in the

two domains. In the meteorology domain, at least, the fundamental phenomena of the

domain are generally well understood, and anomalies are unlikely to be of the type that

would threaten that understanding. In basic science, practitioners are trying to develop or

further theories; consequently, anomalies may concern phenomena that do not easily fit into

a current theoretical understanding. As a first pass, conceptual simulation might enable the

scientist to resolve some of these anomalies and thus ‘‘weed out’’ the more trivial from the

more significant.

A third possibility is that the immediate task determines the strategy. In some

instances in our own data, as well as in the archives of science, applied science practi-

tioners use conceptual simulations—for example, Tesla (Hegarty, 2004), Orville and

Wilbur Wright (Johnson-Laird, 2006), as well as contemporary engineers (Christensen

& Schunn, 2009). Similarly, the basic scientists in our study also used spatial transfor-

mations after an anomaly, without necessarily constructing a conceptual simulation. It

is possible that when the task is to resolve anomalies concerning surface-level phenom-

ena, such as discrepancies in data, scientists of either persuasion use spatial transforma-

tions, but that when the task is to resolve deep-seated incompatibilities between theory

and data, scientists use conceptual simulations. It is further likely that domain and task

are interrelated, in that theoreticians are more likely focused on deep process and con-

sequently more apt to attend to those deep-seated discrepancies and applied science
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practitioners, and especially the meteorologists in our study, are more likely to encoun-

ter discrepancies between pieces of data.

A final possibility concerns the creative nature of basic science. Christensen and Schunn

(2009) argue that conceptual simulation is commonly used by creative engineers to turn

uncertainty into approximation. In meteorology and other applied science, most problem

solving is relatively routine. Often the expert forecaster is able to rely on prior experience,

as he or she recognizes weather patterns previously seen and stored in memory. In resolving

discrepancies between models, the forecaster can use the different models’ known strengths

and weaknesses to evaluate their likely accuracy. Spatial transformations are used to adjust

these individual models to fit, based on a global model.

Anomalies represent an important aspect of the scientific process, because of the opportu-

nity for problem solving that they present. Whereas most studies of scientific reasoning con-

sider science as a single-stranded enterprise, in this article, we have teased apart two

approaches to doing science, the basic and the applied. We have validated this distinction

by identifying separate strategies by which practitioners in each domain dealt with anoma-

lies in the domain. We have proposed that, when faced with the uncertainty posed by anom-

alies, applied science practitioners responded to a specific situation in order to resolve a

specific problem, and did so by using pure spatial transformations. This strategy, though by

no means undemanding or effortless (as shown by its infrequent use by novices in the

domain) nonetheless makes fewer demands on the scientist’s imagination, because it

requires only a discrete mental adjustment of an external visual representation. Basic scien-

tists, on the other hand, in response to the more creative demands of the domain, engaged in

the more creative strategy of conceptual simulation, which requires not only multiple, inter-

dependent mental adjustments of an external visual representation but also the highly crea-

tive step of drawing inferences from the effects of those manipulations. We suggest that

conceptual simulation may thus be a hallmark of creative problem solving.

Notes

1. Of course, in research on such areas (i.e., meteorological research, medical research,

nutrition science research), the goals are generally basic science goals.

2. The coders’ domain knowledge came from textbooks and interviews with the

scientists.

3. Although there were issues in the data with lack of homogeneity of variance, a log

transform shows the results are in the same pattern, with the same significance. Conse-

quently, we report the raw data, with comparable significance values.
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