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Abstract—As children learn to speak, they also gesture; 

previous empirical work has suggested that there is a direct link 

between the two.  In this paper, we propose a priming process 

model that uses gesture to facilitate language.  Our model uses 

the ACT-R/E cognitive architecture and uses a combination of 

repetition naming and priming from gesture spatial 

representations to increase the probability that a word will be 

remembered.  Our model simulates 11 months of learning and 

runs on an embodied platform. 

 
Index Terms—ACT-R/E, cognitive robotics, gesture learning, 

human robot interaction, priming.  

I. INTRODUCTION 

Language and gesture are intimately tied together [1-3]. 

Children typically point before they speak [4] and gesture 

becomes more elaborate as children grow older. Most 

researchers believe that gesture and language are separate 

systems, but that they co-develop; it is the nature of exactly 

how they co-develop at a very young age that we focus on in 

this report. 

Gesture is also a current research topic in robotics, 

especially human-robot interaction (HRI) and developmental 

robotics. Most of the work in HRI focuses on creating robots 

that gesture naturally so that a person can understand them [5] 

or creating joint attention with gesture as a possible modality 

[6; 7]. 

In the last decade, evidence has mounted that children not 

only use gesture before language, but that gesture actually 

facilitates language development [8].  In fact, researchers have 

recently built embodied models that use gesture to facilitate 

language learning [9; 10] 

Sheldon and Lee (2010, 2011) developed a robotic system 

that was based on Iverson and Goldin-Meadow's (2005) work.  

Their system starts with motor babbling and maps motor 

actions to visual objects in the environment and then 

progresses to pointing and one and two word speech.  Their 

system is based on computational formalisms of Piagetian 

schemas and is able to learn series of 

precondition/postcondition pairs through schema chaining.  

Sheldon and Lee's system is able to learn with the help of an 

                                                           
 

active participant how to pick up, reach, point, and label 

different objects in the environment over time.  Their system 

does not, however, attempt to accurately model human 

development. 

It is a mantra in the modeling community that no model is 

perfect; future models attempt to improve upon past models.  

The Sheldon and Lee model is excellent, but its biggest 

weakness in our opinion is that it does not maintain cognitive 

plausibility or constraints.  In order to show cognitive 

plausibility, we (1) use and integrate a variety of cognitively 

plausible mechanisms (e.g., models of human memory, spatial 

representation, etc.), (2) run models using a similar 

experimental paradigm, and (3) match experimental data using 

those mechanisms within the constraints of the experimental 

paradigm.   

The data we attempt to match is an experiment by Iverson 

and Goldin-Meadow (2005).   

II. METHOD (IVERSON AND GOLDIN-MEADOW, 2005) 

A complete description of the experiment can be found in 

Iverson and Goldin-Meadow (2005). 

A. Participants 

10 participants completed the study, followed longitudinally 

between the ages of 10 and 24 months.  All children were 

from middle- to upper-middle-class monolingual English-

speaking families. Each child was observed an average of 8 

times.  

B. Procedure 

The children were videotaped monthly for approximately 30 

minutes.  All taping occurred at the child’s home during play 

time with a primary caregiver or during meals.  The 

experimenter brought toys, but children were allowed to play 

with their own toys as well. Gesture and language were both 

coded. 

Gesture coding  

Several types of gestures were coded in this study, but 

deictic gestures were the focus of this study.  Deictic gestures 

occurred in one of three formats:  (1) showing an object by 

holding up an object to the listener’s potential line of sight; (2) 

index pointing by extending the index finger toward an object; 

and (3) palm pointing by extending a flat hand toward an 
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object.  In all cases, the referent of a deictic gesture was 

assumed to be the object pointed at (or held up) by the hand. 

Speech coding  

All meaningful communicative vocalizations were coded.  

These vocalizations consisted of either English words or 

patterns of speech sounds consistently used to refer to a 

specific object or event (e.g., [ba] for ‘‘bottle’’).  

Speech+Gesture Coding  

All instances in which a child referred to an object were 

categorized into one of three groups:  (1) speech only (using 

only a word to refer to an object), gesture only (using only a 

gesture to refer to an object), or speech and gesture (i.e., using 

both a word and a gesture to refer to an object).  

Reliability  

Reliability between two independent coders was 93% for 

gesture and Cohen’s kappa was .92 (excellent agreement).  

Agreement was 100% for assigning meaning to gestures and 

91% for assigning meanings to words (no kappa available).  

Agreement for Speech+Gesture coding was 92%, kappa = .85. 

(excellent agreement). 

 

C. Results 

As Figure 1 suggests, the majority of object referents were 

made with gestures only, while the number of speech only and 

speech+gesture were approximately equal.  Interestingly, in 

session 1, 90% of the children had a majority of object 

references in gesture only, while in the last session, 0% of the 

children had a majority of references in gesture only. 

 
Figure 1.  The percentage of object references across all 

months.  The bars are the empirical data [8], the points are 

the model fits, and the error bars are 95% confidence 

intervals.   

 

This shift from referring to objects in gesture alone to 

references using speech or speech+gesture was explored by 

identifying how specific lexical items were referred to across 

multiple sessions.  There were four possibilities for how words 

could be referred to across sessions:  (1) Speech-Speech 

(started in speech and stayed in speech), (2) Speech-Gesture 

(started in speech and transitioned to gesture), (3) Gesture-

Gesture (started in gesture and remained in gesture), and (4) 

Gesture-Speech (started in gesture and transitioned to speech).   

As Table 1 suggests, more items were initially referred to in 

gesture than in speech (p < .01).  Most importantly, item 

referents were more likely to move from gesture to speech 

than from speech to gesture (p < .001).  On average, children 

produced a gesture for a specific object 3 months before 

producing the corresponding word for that object. 

Initial Referent Later Referent Empirical Model 

Speech Speech 16% [8-25%] 12% 

Speech Gesture 9% [5-13%] 6% 

Gesture Gesture 25% [17-33%] 38% 

Gesture Speech 50% [42-57%] 44% 

Table 1.  How lexical items transitioned from one modality 

to another.  Empirical data includes mean and 95% 

confidence intervals in square brackets. 

 

These results show that a large proportion of object 

referents appeared in gesture first and then transitioned to 

language.   

 

D. Discussion 

Deictic gesturing seems to precede lexical naming.  These 

results are consistent with the hypothesis that gesture 

facilitates language development.  Iverson and Goldin-

Meadow (2005) propose three possibilities for how and why 

gesture may precede word-level development. 

First, gesture may simply be a request from the child that 

they would like to know the name of a specific object.  If a 

child points to a toy robot, a caregiver may respond with, “Do 

you want the robot?” The caregiver may emphasize the toy 

name [11] to facilitate the child’s symbol grounding.  Note 

that the naming explanation is merely a request for 

information, not a true facilitation of gesture to language.   

Second, gesture may be capitalizing on the fact that gestures 

frequently use spatial representations and may therefore be 

used to convey spatial information [2; 3].   

Third, gesture may put less demand on memory.  Gesture 

seems to save speakers cognitive effort [12; 13] and it may 

simply be easier to express a lexical item in gesture than in 

language.  

We next describe the architecture and the task model. 

III. ARCHITECTURE DESCRIPTION 

ACT-R/E (Adaptive Character of Thought-

Rational/Embodied) is a hybrid symbolic/sub-symbolic 

production-based system based on ACT-R  [14]. ACT-R/E 

consists of a number of modules, buffers, and a central pattern 

matcher. Modules contain a relatively specific cognitive 

faculty associated with a specific region of the brain. For each 

module, there are one or more buffers that communicate 
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directly with that module as an interface to the rest of ACT-

R/E. At any point in time, there may be at most one item in 

any individual buffer; thus, the module’s job is to decide what 

and when to put a symbolic object into a buffer. The pattern 

matcher uses the contents of the buffer to match specific 

productions. 

ACT-R/E interfaces with the outside world through the 

visual module, the aural module, the motor module, and the 

vocal module. Other current modules include the intentional, 

imaginal, temporal and declarative modules.  ACT-R/E 

perceives the physical world by robotic sensors and effectors 

to it and uses a spatial module [15]. ACT-R/E’s goals are to 

maintain cognitive plausibility as much as possible while 

providing a functional architecture to explore embodied 

cognition, cognitive robotics, and human-robot interaction. 

Below we highlight the architectural components that are 

relevant to this project.  Figure 2 shows a schematic of ACT-

R/E and is discussed more fully in Trafton et al. (2013). [16] 

A. Visual 

The Visual Module is used to provide a model with 

information about what can be seen in the current 

environment. ACT-R/E  is able to accept input from video 

sensors. The visual module allows access to both the location 

of an object (the “where'” system) and a more detailed 

representation (the “what” system).  Obtaining additional 

information about an object or person requires declarative 

retrieval(s).  Objects are initially detected using a technique 

known as Chamfer matching [17].  Chamfer matching uses a 

shape dictionary to localize and characterize objects in the 

environment.  We do not make a strong plausibility argument 

for Chamfer matching, though we do notice that both biology 

and Chamfer rely on dictionary-like representations.  Objects 

are further characterized by their color, derived from the hue 

of the object.  

 
Figure 2: Schematic of ACT-R/E 

B. Motor 

ACT-R/E’s motion is controlled by the motor module.  In 

this project, motor is used to control the robot’s eyes and hand 

for pointing.  

C. Spatial 

Spatial representation is a critical aspect of being able to 

point to an object and to be able to pick up an object.  ACT-

R/E performs pointing by utilizing its spatial representations, 

collectively known as Specialized Egocentrically Coordinated 

Spaces (SECS, pronounced seeks) [15]. SECS is 

neurologically inspired and based on 3D space [18].  SECS 

provides two egocentric spatial modules, which are 

responsible for the encoding and transformation of 

representations in service of navigation (configural) and 

manipulation and pointing (manipulative).  

The configural module provides high fidelity location 

information for attended representations that is automatically 

updated as the model moves through or looks around the 

environment. The configural module represents the world as 

spatial blobs that can be navigated to or around. The 

manipulative module uses a metric, geon-base [19] 3D 

representation for objects.  The manipulative module provides 

encodings of object geometry and orientation and position in 

support of pointing and grasping, a critical component to 

object shape description discussed below. 

IV. SIMULATOR AND ROBOT DESCRIPTION 

Currently, the open-source Gazebo robot simulator [20] is 

used to enable data collection and to speed-up the model 

development cycle. 

Our current robot platform is the MDS (Mobile-Dexterous-

Social) Robot [21].  The MDS robot neck has 18 DoF for the 

neck and head including eye pitch and pan which allows the 

robot to look at various locations in 3D space.  Perceptual 

inputs include a color video camera and a SR3000 camera to 

provide depth information (unused in this project).  For the 

current project, the MDS head can move its eyes and head and 

its arm and hand and fingers to look at and point at various 

objects in 3D space. 

V. MODEL DESCRIPTION 

An ACT-R/E model was developed that simulates the 

development of language learning through gesture. 

A. High Level Description of the gesture-language model 

There are four model components that allow the model to 

learn single words and receive facilitation from gesture: 

requesting words through gesture; creating spatial 

representations of pointed or handled objects; priming of 

words through visual and spatial representations; and gradual 

learning of memory representations. 

Requesting words through gesture.  The model’s primary 

goal is to explore its world.  This exploration occurs primarily 

through playing with objects in the environment.  Of course, 

the model can not always reach or play with an object (due to 

mobility or manipulation constraints), so it will point at the 

object.  By pointing at an object, the caregiver has a 50% 

chance of labeling the object.  We base that 50% value on 

Messer’s (1981) work, who found that labels in caregivers 

speech had a 50% chance of being the loudest word in the 
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utterance.  We used this value because the empirical paper idd 

not report how often the caregiver labeled objects for the 

child.  In simulation, we found that all but the very smallest 

values of this parameter worked (very low values simply took 

more time to learn toy names).  According to the model, initial 

gesture to an object or toy served as a request for information. 

Spatial representations of pointed or handled objects.  

According to SECS, any time that an object is grasped or 

manipulated, a spatial representation is created for that object 

to enable the manipulation itself.  Specifically, the information 

contains 3D geon [19] shape information (e.g., cube, pyramid, 

sphere, etc.).  Young children do seem to learn both metric 

and symbolic information about shape at a very early age, so 

both types of information were included in the spatial 

representation.
1
 

Gradual learning of memory representations.  ACT-R/E 

has a strong theory of memory:  how a memory element 

(chunk) is encoded, remembered, and the situations where 

forgetting occurs. 

Memory in ACT-R/E is described by a chunk’s activation.  

Activation is the log odds that a particular chunk will be useful 

in the future; high activation chunks are expected to be very 

useful while low activation chunks are expected to be less 

useful. 

Activation depends both on how much and how frequently a 

memory has been used in the past, as well as how related the 

item is to other memories that are currently the focus of 

attention.  Activation consists of three primary components: 

activation strengthening, spreading activation, and noise.  

Activation strengthening is learned over time and is a function 

of how frequently and recently the memory has been thought 

about in the past, and represents the model’s familiarity with a 

concept. Spreading activation is context dependent, allowing 

memories that are currently the focus of attention to activate, 

or prime, other related items.  Noise is a random component 

added in to model the noise of the human brain. They are 

combined according to the following equation (Anderson, 

2007): 

 

 

where Ai is the total activation of chunk i, Bi is the total 

activation of chunk i, WjSji is activation spread from item j to 

item i, and ε is noise. Activation strengthening of a memory 

item i is calculated according to (Anderson, 2007): 

 

 
 

where R is the number of times item i has been referenced 

(e.g., was the focus of attention, or was explicitly thought 

                                                           
1 Note that this is almost assuredly a simplification.  Children do seem to 

learn spatial symbolic information by 1.5 years [22].  In our work here, we do 

not model the full learning trajectory, making the assumption that these 
children have at least some rudimentary spatial knowledge. 

about) in the past, tr is the time that has passed since the rth 

reference, and d is the strengthening learning parameter, 

which defaults to 0.5.   

Activation values of 0 or less means that a chunk is not able 

to be retrieved.  However, when two identical chunks are 

merged, the unitary activation grows with increasing R. 

The activation strengthening equation suggests that a new 

memory element is easy to remember in the short term, but if 

it is not rehearsed in some manner it will soon be forgotten.  

The model posits that young children do not have a rehearsal 

strategy and therefore things will be forgotten quickly.  Thus, 

the model predicts that it will require many repetitions of 

hearing an object’s name before that child is able to remember 

the name of that object.  Of course as a child grows, they are 

able to create or learn rehearsal strategies so that they are able 

to remember names of objects and people.  The model is able, 

with nothing but the repetition of a word, to learn the name of 

objects in its environment over the course of several months. 

Priming of words through visual and spatial 

representations.  According to the model, the core reason that 

gestures facilitate language learning is that aspects of the 

object representation prime the name of the object.  This 

priming occurs through ACT-R/E’s spreading activation, 

which is part of the declarative memory system.   

Spreading activation is spread along associations between 

memories. In addition to considering what items are being 

referenced at any given time, it also considers what items are 

in the current context. The current context consists of both 

those items being referenced, as well as the set of items in slot 

values of the items being referenced that are under 

consideration.  Association strengths, intuitively, reflect how 

strongly item j, when currently being referenced, predicts that 

item i will be referenced next.  The equations for the 

associative strength from an item j to an item i in memory are 

 

 

 

where Sji is the strength of association between chunks j and i, 

S is the maximum associative strength, and fanj is the fan of 

chunk j (the number of other memory elements that memory j 

is associated with).   

Every time the model sees an object and wants to pick it up 

or point to it, a shape representation is created.  This shape 

representation then increases the activation of the name of the 

object through priming, making the name easier to remember. 

For all models, we kept most of the ACT-R/E parameter 

defaults.  The parameters that were changed include the 

strength of association (ACT-R/E has no default, but we used 

a common value of 3.5) and activation noise ((ACT-R/E has 

no default, but we used a common value of .25).  All other 

parameters were set to ACT-R/E default values. 

B. Model Environment 

The environment that the model lives in contains 30 toys 

that it is interested in.  The number 30 is derived from several 

empirical papers showing that middle-class families have at 

least 30 toys for their 1 year old [23; 24].  The toys varied with 

Ai = Bi + WjS ji
j

å +e

S ji = S- ln( fan j )
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respect to shape and color, though there were many 

overlapping features (e.g., several robots, balls, and dolls, 

etc.).  

C. How the model plays with toys 

The model begins at age seven months with very little a 

priori knowledge.  It knows the name of no objects and has 

only a few goals:  to find, name, and play with objects.  

The model begins by searching the environment for a toy it 

wishes to play with.  The current system has no preferences, 

so it picks a toy at random from all that are available to it.  

Once the model has found a toy, it points to it with either a 

finger or an open hand.   

This initial pointing or grasping impacts both the model and 

the caregiver.  If the model wants to know the name of the toy 

as it is pointing to or holding the toy, the shape and color of 

the toy provide some activation facilitation to help the child 

remember the name.  The caregiver, seeing the child model 

point to the toy, may label the toy (e.g., “Do you want the toy 

robot?”).  Note that the caregiver provides some prosodic 

cues to the model [11; 25] to help the child determine the toy 

name in the speech stream. 

The model then plays with the toy for a while.  After it is 

finished playing with the toy, it drops the toy and looks for a 

new toy to play with.  Note that the model may choose the just 

dropped toy again (though this does not greatly impact the 

model’s performance). 

If the model hears the name of the toy the model fuses the 

aural aspect of the toy (e.g., “ball”) with the shape (e.g, 

sphere) and the color (e.g., red) into a single chunk.  This new 

chunk may be merged with another identical chunk, increasing 

its activation for later retrieval.  

If the model does not hear the name of the toy, an unnamed 

chunk with the physical characteristics of the toy (e.g., sphere 

and red) is created.  This chunk will exist in memory, but can 

not provide any information about the name of the chunk.  If it 

is retrieved, the model will not be able to retrieve the name of 

the chunk, perhaps explaining why children sometimes have a 

successful retrieval of the object, but can not remember the 

name itself. 

If the model is able to remember the name of the chunk, it 

will either say the name of the toy or it will say the name of 

the toy while gesturing to it. 

During the first three months of the model’s life (age 7 – 10 

months), the model spends 30 minutes a day showing a toy to 

its caregiver and playing with toys. We do not have any strong 

data on 30 minutes / day, but this number was chosen for 

several reasons.  First, 30 minutes is the length of the 

experiment itself, and a different number would have 

increased the number of free parameters to the model.  

Second, while we are quite sure that most middle-class 

children play with toys longer than 30 minutes, it is not clear 

how long each day a caregivers will label toys for the child. 

At age 10 m (the average age of the children in the study), a 

30 minute experimental session was run.  The experimental 

session is exactly the same as the daily session for the model, 

but data is collected about what items are labeled by the 

caregiver and played with by the model. 

Data is then collected for 8 months (the average time the 

experiment lasted during the study) with data collected once a 

month, but the child playing with toys every day. 

D. A sample experimental model run  

The first time the model is run in experiment mode, the 

model has played with many toys and has received labels for 

many of them from previous interactions with its caregiver.  

When the experiment begins, the model finds a random toy in 

its environment that it wants to play with – in this case, a blue 

box and attempts to retrieve its name.  The blue box’s 

representation has this form: 

 

box4293 

  isa object 

  name “box” 

  shape cube 

  color blue 

 

Because the box has only been labeled for it a handful of 

times over the previous three months, the model is unable to 

retrieve the name of the toy because its activation is -1.97 

(recall that chunks can not be retrieved unless they have 

activation over 0). 

The model then points at the box and that pointing creates a 

spatial representation of the ball (cube) which can then be 

used to spread activation to the box object chunk.  

Unfortunately in this case, the total amount of spreading 

activation is only .75 and noise is a -.28, which is not enough 

to bring the total activation above 0 and allow the child to 

remember the box chunk and hence remember its name.   

The pointing, however, is noticed by the caregiver and the 

caregiver says “box.”  The model then creates a new chunk 

that contains exactly the same slots and values; this chunk is 

then merged with the box4293 chunk above which increases 

the number of references to the named box chunk, increasing 

the activation for the next time that it is needed. As the object 

is heard multiple times, the activation gradually increases and 

eventually the named chunk is able to be retrieved.  When the 

model is able to remember the name, the model will either say 

the toy’s name or say its name while pointing to or handling 

the toy. 

E. Modeling developmental progress 

When the model is young, it has no knowledge about object 

names, what they look like, or any other features about them.  

As it gets the opportunity to play with different toys and hear 

their caregiver name the toys, it builds up a simple 

representation of the toy that includes the name, the shape, and 

the color of the toy (among other things).   

This representation is very weak at the beginning – it is 

quite difficult to remember since the child’s experience with it 

is so little.  However, as the model has more experience with 

the toy, the memorial representation strengthens and is finally 

able to be recalled consistently. 

Gesture helps in two different ways.  First, gesture provides 
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a cue to the caregiver that the model wants a label for the 

object.  This is especially critical during the early parts of the 

model’s life.  Second, gesture provides a source of priming to 

the object.  This priming literally speeds up learning because it 

increases the activation of the gestured object.   

 
Figure 3:  A toy’s activation across the entire experiment.  

For this model, priming was turned on.  The black dots are the 

activation at the end of each day of the model experiment and 

the line shows a best fitting line with 95% CI. 

 
Figure 4:  A toy’s activation across the entire experiment.  

For this model, priming was turned off.  The black dots are the 

activation at the end of each day of the model experiment and 

the line shows a best fitting line with 95% CI. 

 

To explore the advantage of gestures and priming, Figure 3 

shows a graph of a toy’s activation across days for a single 

model.  For this model, activation priming was turned on.  

Figure 4, in contrast, shows a similar graph where priming 

was turned off.  Note that learning occurred much faster with 

priming: the slopes are quite different.  Remember that a word 

is remembered when its activation is over 0. 

To provide some match to the experimental procedure, 16 

models were run with priming turned on. 

F. Model fit 

As is evident in Figure 1, the model matches the overall 

number of object references quite well; R
2
 = .96 and RMSD = 

2.4.  Critically, all model points are within 95% confidence 

intervals of the data.  Additionally, the empirical data showed 

that 10% of the data on the first experimental session was 

speech; this model shows a comparable finding with 6% of the 

model data using speech (within 95% CIs).  The empirical 

data showed that 0% of the children used a majority speech on 

the last session whereas 6% of the model children used a 

majority of speech on the last session.   

Finally, as Table 1 suggests, the transition model data 

shows a reasonably close fit to the data, with an R
2
 = .79 and 

RMSD = 7.5.  This data is quite interesting; the current model 

does transition from gesture to speech, but seems to continue 

to gesture at a rate slightly slower than the empirical data 

suggests (the gesture-gesture transition is the only data point 

outside of confidence intervals). 

This model was run using Octavia. 

VI. GENERAL DISCUSSION 

This paper has described a process model of how children 

use gesture to facilitate language learning. In this model, 

gesture has two primary roles:  a request for the name of the 

object; and to provide priming to the memorial representation 

to facilitate memory.  When the model begins, it does not 

know the name of any objects; the only way to get that 

information is from an external source – in this case a 

caregiver.  When the model originally hears a label for an 

object, its memory for the object is quite weak and is likely to 

be forgotten soon.  When the model gestures at an object, it 

also creates a spatial representation that provides some 

priming activation to the name of the object.  As the model 

hears the name of the object multiple times during its life, its 

activation strengthens; additional priming helps the model 

learn the object name faster. 

This model connects well with the original empirical paper.  

Recall that Iverson and Goldin-Meadow (2005) suggested 

three reasons for how and why gesture precedes word-level 

development.   

They proposed that a child’s gesture may tell a caregiver 

that they want to know the name of an object.  In our model, 

this is a near-necessity, since there is no other way that the 

model can request the name of an object besides pointing or 

handling the object.  We assume that a child can also extract 

words from the speech stream, but that gesturing greatly 

speeds this process up. 

Second, Iverson and Goldin-Meadow suggest that gestures 

may actually convey spatial information.  Our model suggests 

that gestures are a core component of linking spatial 

representations (shape information in particular), which is a 

necessary aspect of priming in our model.  Thus, while we 

agree that some gestures can convey spatial information 

compared to language, our model suggests that this is not 

where the advantage lies:  rather, gesture creates a spatial 
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representation that provides a boost in activation to a memory 

chunk and that makes it more likely to remember an object’s 

name. 

Third, Iverson and Goldin-Meadow suggest that gesturing 

reduces cognitive effort by putting less demand on working 

memory.  Our model suggests that priming does not put less 

demand on memory or save cognitive effort.  Rather, it 

provides a direct facilitative role through spreading activation. 

Of the model’s four components (requesting words through 

gesture, spatial representations, priming, and gradual learning 

of memory representations), three of them are absolutely 

critical to the success of the model.  Getting the names of 

objects could be done in different ways (e.g., through the 

speech stream alone).   We believe that gesture speeds up this 

process, but it is not a critical aspect of the success of the 

model itself.  The other three components, however, are 

needed.  Creating spatial representations from gesture is 

needed because they are a source of priming.  Priming itself is 

the core reason for the facilitation of words.  And the gradual 

learning of the memorial representations is needed to provide 

a baseline of activation that priming can act upon. 

The model also makes a series of interesting predictions.  

First, it predicts that sometimes, even after a child has 

successfully named an object, the child may not be able to 

remember the specific name of an object, but that this should 

occur less and less as familiarity with a specific object 

becomes greater.  Second, the model shows an interesting 

pattern where it over-generalizes similarly shaped objects.  It 

can become ‘stuck’ on some objects, ignoring color or other 

attributes.  Third, the model suggests that it is quite difficult to 

remember a completely novel object if it is only seen once 

every month.  In fact, the model makes a strong prediction that 

a novel object can not be learned until a child has the ability to 

elaborate and / or rehearse the new object.  This prediction 

arises from the activation dynamics described before:  an 

object that is seen and named only rarely does not receive 

enough base level activation to be able to retrieve its name 

(this is similar to not remembering an acquaintance’s name if 

you haven’t seen them in a very long time). 

Overall, this model provides a process explanation for why 

children gesture to objects and how a gesture can facilitate 

word-learning. 
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