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Previous research has shown that multicolored scales are superior to ordered brightness scales for
supporting identification tasks on complex visualizations (categorization, absolute numeric value judg-
ments, etc.), whereas ordered brightness scales are superior for relative comparison tasks (greater/less).
We examined the processes by which such tasks are performed. By studying eye movements and by
comparing performance on scales of different sizes, we argued that (a) people perform identification tasks
by conducting a serial visual search of the legend, whose speed is sensitive to the number of scale colors
and the discriminability of the colors; and (b) people perform relative comparison tasks using different
processes for multicolored versus brightness scales. With multicolored scales, they perform a parallel
search of the legend, whose speed is relatively insensitive to the size of the scale, whereas with brightness
scales, people usually directly compare the target colors in the visualization, while making little reference
to the legend. Performance of comparisons was relatively robust against increases in scale size, whereas
performance of identifications deteriorated markedly, especially with brightness scales, once scale sizes
reached 10 colors or more.

Keywords: data visualization, graph comprehension, eye tracking, visual search

Supplemental materials: http://dx.doi.org/10.1037/a0015085.supp

The design of a complex visualization must be guided by the
consideration of the uses to which it will be put. A visualization
that is effective for some tasks may not be effective for others
(Wickens, Merwin, & Lin, 1994). Two basic uses of color codes in
data visualizations are (a) the identification of a represented ob-
ject’s type or features (e.g., a temperature range, political party
affiliation, body tissue type, etc.) and (b) the determination of
quantitative relations among objects, including relative compari-
son (greater/less), ordering, and maxima/minima. In addition, us-
ers combine these functions, for instance when discerning trends
across categories.

Various features of color can support each of these functions to
different extents. For instance, hue has been found to be highly
effective for nominal coding (e.g., coding of object categories,
absolute quantitative values and qualitative features), more effec-
tive than brightness and several noncolor attributes (Christ, 1975).
On the other hand, brightness is well-suited to coding relative
quantitative relations (Spence, Kutlesa, & Rose, 1999). Controlled
comparisons have demonstrated that hue coding is more effective
than brightness coding for supporting absolute value judgments,
whereas brightness coding is superior to hue coding for sup-
porting relative quantitative judgments (Merwin & Wickens,
1993; Phillips, 1982).

However, many questions remain concerning this Color Code �
Task interaction. How exactly do hue and brightness support each
of these tasks? How can we make scales that improve people’s task
performance? How robust is this interaction effect? To begin to
answer these questions, we argue, it is important to analyze the
processes by which people solve these tasks. Previous process
explanations have been limited to the informal observations that
hue scales are more discriminable than brightness scales, whereas
brightness scales are more amenable to perceptual ordering than
hue scales (Phillips, 1982). This hypothesized analysis is summa-
rized in Table 1. One method of exploring the process by which
people use visualizations is by examining their eye movements so
as to relate eye movement patterns to performance measures such
as accuracy and response time. Also, patterns of response times
provide evidence of process. Previous research on the Color
Code � Task interaction either did not examine response times
(Phillips, 1982) or did not examine eye movements (Merwin &
Wickens, 1993; Phillips, 1982) and so were unable to shed much
light on process.

We propose that one of the critical aspects of the process of
using visualization colors is how the legend is used perceptually
and cognitively. Other researchers have shown how important the
legend is to graph interpretation (Carpenter & Shah, 1998; Peebles
& Cheng, 2003; Trafton, Marshall, Mintz, & Trickett, 2002). For
example, Carpenter and Shah showed that people needed to look
multiple times at the legend to remember the information. Trafton
et al. replicated and extended that work and showed that even
skilled forecasters frequently referred to the legend a great deal to
answer relatively easy questions about complex meteorological
visualizations. Clearly, the more time spent looking back and forth
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between the legend and the main visualization, the more difficult
and time consuming the task will be. The legend may distract the
user from the visualization and the information it encodes (Gillan,
Wickens, Hollands & Carswell, 1998).

Hypothesized Process Explanations

Identification of color-coded objects in a visualization depends
on reference to a legend except when the color-value associations
are symbolic in nature (e.g., blue represents water) or when the
number of associations is so small and the colors are sufficiently
memorable and distinct that they can be memorized. However,
although it is sometimes possible to memorize the legend colors, a
great deal of research in both graph comprehension (Carpenter &
Shah, 1998; Peebles & Cheng, 2003) and interface design (Gray &
Fu, 2004; Gray, Sims, Fu, & Schoelles, 2006) suggests that people
use their perceptual system to reduce memory load. Thus, use of
the legend is usually central to identification tasks with color-
coded visualizations.

Because visual search is central to the process of legend use,
research on visual search for colors (Nagy, 1999; Nagy & Sanchez,
1992) may provide some direction to understanding the process of
locating colors in legends, even though that research is typically
conducted under highly controlled conditions that are not identical
to those in legend search. This research has consistently pointed to
the impact of the discriminability of colors on the efficiency of
visual search (Carter, 1982; Smallman & Boynton, 1990). More-
over, discriminability can affect the search process itself. When the
target and distractor stimuli are similar, people engage in a serial
search that increases in duration with the size of the set of distrac-
tors. In contrast, when the target and distractor stimuli are suffi-
ciently distinct, people sometimes perform a faster parallel search,
which is relatively insensitive to set size. This trend has been
observed for visual search for colors (Nagy & Sanchez, 1992) as
well as for visual search more generally (Wolfe, 2003). We will
assess the use of parallel search by comparing performance on
color scales of different sizes.

Turning now to quantitative tasks, we will focus in this paper on
the task of making relative comparisons between two represented
objects: that is, determining which is greater/less on some quan-
titative dimension. Whereas the process differences in identifica-
tion tasks were perceptual in nature, the process differences in
relative comparison tasks appear more cognitive. One can imagine
two distinct strategies for making a relative comparison between
two locations on a visualization. In one strategy, one locates the
colors on the legend matching each of the two locations’ respective
colors, as in identification tasks, and then compares the legend
entries, either on the basis of their relative spatial positions on the
legend or on the basis of the quantitative values associated with
each. By the second strategy, one compares the colors of the two

visualization locations directly (e.g., judging which is darker) and
thereby infers the relative difference between their respective
numerical values without reference to the legend. Clearly, the
second strategy is more efficient.

To support the direct comparison strategy, scale colors must be
perceived as ordered. Research generally suggests that brightness
provides an effective encoding of order (Spence et al., 1999).
Saturation is also sometimes used for this purpose, but it appears
to be inferior to brightness (Ware, 1988). Hue codes, especially
rainbow/spectral codes, are frequently used in practice, but their
use is not recommended by experts (Brewer, 1994) and provide
poorer performance for ordering judgments. A spectrum or rain-
bow represents a physical ordering, but not a perceptual ordering.
Moreover, spectral hue orderings conflict with the brightness or-
dering, as yellows and greens in the interior of the ordering are
typically perceived as brighter than the other colors (Lehmann,
Kaser, & Repges 1997).

In the experiments to be reported, we assessed the processes
underlying the Task � Scale type interaction. In Experiment 1, we
assessed participants’ cognitive-perceptual processes by examin-
ing their eye movement patterns, performance accuracy, and reac-
tion times. Specifically, we wished to determine whether certain
patterns of eye movements characterized high task performance, as
assessed by high accuracy and low response times, as well as to
determine which color scales promote performance. In general, we
predict that superior performance is associated with less frequent
saccades to the legend. This should be true for both relative
comparison tasks and identification tasks. In the case of relative
comparison, faster comparisons are hypothesized to be associated
with direct comparison between locations on the visualization,
requiring few saccades to the legend. Experiments 2 and 3 specif-
ically addresses the question of whether legend search is serial or
parallel with different types of color scales by examining the effect
of scale size on performance. On the basis of previous research
(Nagy & Sanchez, 1992), we would expect that parallel search is
more often used with multicolored scales and serial search is more
often used with brightness scales because multicolored scales are
generally more discriminable than brightness scales.

Experiment 1

This experiment was designed to explore both multicolored and
brightness scales on both an identification task and a relative
comparison task while examining eye movements.

Method

Participants

Sixteen undergraduate psychology students from George Mason
University participated in this study for partial course credit. None
of the participants were color blind. All participants had normal or
correct-to-normal vision. The experiment lasted approximately 30
min.

Apparatus

A Power Macintosh G4 (Dual 1 GHz), equipped with a 20-inch
(viewable) ViewSonic P225fb capable of running at 120 Hz,
running custom software, was used to present the stimuli, control

Table 1
Hypothetical Explanations of Task � Scale Type Interaction

Multicolored scale Brightness scale

Identification task Easy: highly discriminable Hard: less discriminable
Comparison task Hard: no/little perceived

ordering
Easy: clear perceived

ordering
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the timing of experimental events, and record participants’ re-
sponse times. This computer was networked to a Dell Pentium 4
machine that collected eye-tracking data in conjunction with an Eye-
link 2 system (SR Research Ltd. Mississauga, Ontario, Canada).
Latency between the machines is 10 ms. The Eyelink 2 tracker has
250-Hz temporal resolution and gaze position accuracy of less than
0.5° and uses an infrared video-based tracking technology to
compute the center and size of the pupils in both eyes. An infrared
system also tracked head motion. Even though head motion was
measured, the head was stabilized by means of a chin rest. The
chin rest was located 61 cm from the monitor.

Materials

A stimulus consisted of a 10 � 10 color grid and a legend (see
Figures 1 to 3). The colors on each stimulus were taken from a
seven-color scale. Each color was represented approximately
equally in the grid, with 14 instances of five of the colors and 15
instances of the remaining two colors (which two was determined
randomly). The legend of the scale colors and their respective
numeric values was presented vertically on the right side of the
grid, a typical location of legends in complex visualizations.

Two scale types were used, multicolored and brightness, with
two instantiations of each type. The two multicolored scales were
Rainbow and COAMPS. The two brightness scales were Grayscale
and Greenscale. Rainbow was constructed by using the built-in
“rainbow” set of hues from the R statistics/graphics environment
(R Development Core Team, 2007). The COAMPS scale came
directly from one of the displays of the Coupled Ocean/
Atmosphere Mesoscale Prediction System (COAMPS) meteoro-
logical modeling system (Hodur, 1997). The Grayscale was cre-
ated by varying luminance in equal steps from black to white. The
Greenscale came from Spence et al. (1999; called “Brightness” by
those authors). It had approximately equal intervals on the Munsell

value dimensions with hue and chroma held constant. All stimuli
were created using the R environment (R Development Core
Team, 2007). The specifications of the colors in all the color scales
are available on the web in supplemental materials.

On each trial of the identification task, an “X” appeared in one
cell of the grid to mark the target color to be identified. Each of the
scale’s seven colors was the target color on two trials.

On each trial of the comparison task, an “X” and an “O”
appeared in two cells of the grid to mark the target colors to be
compared. A graph was generated for each of the 21 possible
pairwise comparisons for the seven colors in the scale. The as-
signment of the “X” or “O” to the greater value was determined
randomly.

Figure 1. An example of the stimuli used in the current experiments. All
stimuli consisted of a 10 � 10 grid of randomly distributed colored
squares. The colors shown in this example are from the identification task
and the multicolored COAMPS scale. (A color version of this figure is
available on the web in supplemental materials.)

Figure 2. An example of eye movements on a multicolored scale in the
comparison task. (A color version of this figure is available on the web in
supplemental materials.)

Figure 3. An example of eye movements on a brightness scale in the
comparison task. (A color version of this figure is available on the web in
supplemental materials.)
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The location of the target(s) on the grid and the arrangement of
colors on the grid were determined randomly for each subject.

Fifty-six graphs for the identification task (7 colors � 2 repe-
titions � 4 scales) and 84 graphs for the comparison task (21
pairwise comparisons � 4 scales) were created, for a total of 140
graphs.

Procedure

Participants were tested individually. To minimize the search
requirements of the task, the location of the targets (the “X” for the
identification task and both the “X” and the “O” for the compar-
ison task) was presented on a blank screen prior to the presentation
of the graph. The trial proceeded to the graph only when the
participant was fixating within 2° of the target(s), and the mea-
surement of response time began at the same time. On the identi-
fication task, the participant determined the numerical value of the
color that the “X” was on, hit a key (causing the response time to
be recorded) and then said the response (a no. from 1 to 7) out
loud, which was recorded and scored later for accuracy. Verbal
responses were used because if participants needed to look at the
keypad to enter a numerical response the eye-tracker could lose
calibration. On the comparison task, participants indicated whether
the numerical value represented by the “X” or the “O” was greater
on the legend by pressing the “z” or the “/” key (labeled with an
“X” or an “O”, respectively), causing the response time to be
recorded. After a response was made, the next trial started.

Stimuli were counterbalanced according to task (identification
or comparison) and block randomized by scale. All stimuli were
presented in a random order within each block. Each participant
was given a brief training session with only three colors (black,
white, red) before each task began.

Results

As significant Task � Scale Type interactions were found for
both accuracy, F(1, 15) � 73.94, MSE � .007, p � .0001, �p

2 �
.83; and response times (RT), F(1, 15) � 22.81, MSE � 94.06, p �
.001, �p

2 � .60; the results will be reported separately for each task.
Accuracy was measured as the proportion of trials on which the
subject made a correct response.

Identification Task

Accuracy and RT. Table 2 indicates that participants were
faster to respond to graphs that were coded with multicolored
scales than to graphs coded with brightness scales, F(1, 15) �
16.8, MSE � 89.98, p � .001, �p

2 � .53. This effect was not due
to a speed–accuracy trade-off as participants were also more
accurate on multicolored graphs than on brightness graphs, F(1,
15) � 61.2, MSE � .01, p � .001, �p

2 � .80.
Eye movement analysis. Only saccades that landed within 75

pixels of the center of a target or at least 75 pixels within the
boundary of the legend were counted as fixations. The item closest
to the point of fixation was classified as the fixated item. Consec-
utive fixations on the same item were considered a single gaze.
Eye movements were classified as saccades if they either (a)
exceeded a speed of 30°/s and an acceleration of 8,000°/s2, or (b)
exceeded an acceleration of 8,000°/s2 and a distance of 0.2°.

Table 3 shows the results. Participants spent longer looking at
the target with brightness scales than with multicolored scales,
F(1, 15) � 27.7, MSE � 11.90, p � .001, �p

2 � .65. Also,
participants spent more time looking at the legend with brightness
scales than with multicolored scales, F(1, 15) � 9.2, MSE �
12.40, p � .01, �p

2 � .38. Finally, participants made more saccades
to the legend with brightness than with multicolored scales, F(1,
15) � 10.7, MSE � .08, p � .01, �p

2 � .42.

Comparison Task

Accuracy and RT. As Table 2 indicates, participants were
faster to respond to graphs that were coded with brightness scales
than to graphs that were multicolored, F(1, 15) � 23.9, MSE �
29.75, p � .001, �p

2 � .61. This effect was not due to a speed–
accuracy trade-off as participants were also more accurate on
brightness graphs than on multicolored graphs, F(1, 15) � 15.6,
MSE � .002, p � .001,�p

2 � .51.
Eye movement analysis. As a comparison of Figure 2 and

Figure 3 suggests, the perceptual process was quite distinct for
different scales on the comparison task. To explore the differences
systematically, average gaze duration on targets and legend was
examined. Interestingly, as Table 3 suggests, the time spent look-
ing at the two targets was greater for brightness scales than for
multicolored scales, F(1, 15) � 15.1, MSE � 2.81, p � .05, �p

2 �
.50. In contrast, the time spent looking at the legend was much
greater for multicolored scales than for brightness scales, F(1,
15) � 40.5, MSE � 13.97, p � .0001, �p

2 � .73.
Participants using brightness scales looked back and forth be-

tween the two targets much more frequently than when using the
multicolored scale, F(1, 15) � 33.0, MSE � .03, p � .0001, �p

2 �
.69. In contrast, participants made many more saccades to the
legend when using a multicolored scale than when using a bright-
ness scale, F(1, 15) � 30.7, MSE � .07, p � .0001, �p

2 � .67.

Discussion

The results replicated the previously found Task � Scale Type
interaction (Merwin & Wickens, 1993; Phillips, 1982); that is,
performance was superior using multicolored scales on the iden-
tification task and superior using brightness scales on the relative
comparison task. Eye-movement analyses suggested process sim-
ilarities and differences among the four task-scale conditions.

Table 2
Results From Experiment 1

Multicolored
scale Brightness scale

M SD M SD

Identification task
Reaction timea 1.28 .47 1.71 .78
Accuracy 0.93 .04 0.63 .15

Comparison task
Reaction timea 1.76 .66 1.46 .58
Accuracy 0.89 .08 0.95 .04

a Given in seconds.
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For the identification task, more time was spent looking at the
target and legend and there were more saccades to the legend
with a brightness scale than with a multicolored scale. These
results suggest that multicolored scales afford more efficient
search of the legend. The possibility that participants solved the
task by memorizing the color-number associations appears un-
likely as they devoted approximately half of the trial response
times to examining the legend with both of the respective scale
types (compare Table 2 and Table 3, identification task). The
greater efficiency of visual search with multicolored scales is
more likely due to the greater discriminability of those scales’
colors relative to the brightness scales (Carter, 1982; Smallman
& Boynton, 1990).

The comparison task showed a completely different pattern of
results. When using a brightness scale, participants looked back
and forth between the two target colors, apparently determining
which one was lighter or darker. With the multicolored scales,
participants needed to look at the legend to compare the colors,
either by determining which was higher (or lower) on the legend or
by reading and comparing the numbers associated with each color.
These differences in process are suggested by reaction times as
well, as direct comparison between targets is more efficient than
legend-based search and comparison.

The findings shed light on salient process differences be-
tween the two tasks. Most significantly, the comparison task is
clearly not solved by repeating the process used in the identi-
fication task twice over, once for each target, and then com-
paring the results of the two identifications. If this “double
identification” process were adopted, response times and legend
saccades for comparisons would be at least twice as great as
those for identifications. However, on the contrary, the quantity
and duration of fixations on the legend are lower on the com-
parison task than on the identification task, especially for the
brightness scales. Similarly, the response times are lower on the
comparison task than on the identification task for the bright-
ness scales and, though response times are higher for the
multicolored scales on the comparison task, the increase in time
(38%) is far below the roughly 100% increase predicted by the
double identification hypothesis.

The strategy used to solve comparison tasks in place of the
double identification strategy likely differs depending on scale

type. In the case of the brightness scales, the eye tracking data
point to a difference in cognitive strategy between the identifica-
tion and comparison task. The great decrease in rate and duration
of legend fixations, together with the relatively high rate of sac-
cades between the targets, suggests that participants typically
solved the comparisons by means of direct comparison between
the target colors with little reference to the legend.

The case of the multicolored scales is less clear. The increase in
response times and legend fixations between identification and
comparison tasks suggest that participants continued to search the
legend when solving comparison problems. However, the finding
that the response time increase was far less than the doubling
predicted by the double identification hypothesis suggests a much
more efficient search process is being used. Perhaps participants
are able to adjust their visual search strategy to the task demands,
adopting a parallel search strategy for comparison tasks, but per-
forming serial search for identification tasks. This seems reason-
able, as identification requires the participant to make a more
precise determination of the matching color on the legend, so as to
determine the corresponding numerical value. In contrast, the
comparison task only requires the participant to determine the
positions of legend colors with sufficient precision to judge which
of two is higher (or lower) on the legend. One common method to
differentiate between serial and parallel visual search is by deter-
mining whether search time is influenced by the set size—that is,
the number of “distractors” or in the present context the number of
colors in the scale. Parallel search, in contrast to serial search, is
relatively unaffected by set size (Nagy & Sanchez, 1992).

Of course, strategies other than parallel search may account for
the surprisingly rapid comparisons made with multicolored scales.
For instance, participants may employ logical strategies, such as
responding after identifying one of the comparison colors as an
endpoint in the scale without locating the other color. Alternately,
they may memorize the values/positions of some of the colors. In
the next two experiments, we will compare performance on scales
of different sizes in hopes of resolving this question: in Experiment
2 for the identification task and in Experiment 3 for the compar-
ison task.

Experiment 2

This experiment was designed to compare multicolored and
brightness scales on an identification task across different num-
bers of scale colors. Previous researchers have made explicit
suggestions on the number of scale colors that should be used
in visualizations, ranging from 4 to 10 and have suggested that
having more than 12 colors on a scale hurts discriminability and
adds confusion (Krebs & Wolf, 1979; Rice, 1991). A quick
examination of most complex visualizations, however, shows
many violations of these suggestions. In practice, users want
enough precision to differentiate quantitative values at a level
useful for a particular domain. For meteorological forecasting,
for example, large temperature ranges (greater than 5 degrees)
are not usually informative to the forecaster. Thus, having many
colors on a scale to show a large range of quantitative values
seems to be an important concern of users of complex visual-
izations.

Table 3
Results From Experiment 1 Eye Tracking Data

Multicolored
scale

Brightness
scale

M SD M SD

Identification task
Target fixation durationa 0.48 .14 0.68 .25
Legend fixation durationa 0.68 .26 0.80 .31
Saccades to legend 2.40 .60 2.70 .70

Comparison task
Target fixation durationa 0.99 .29 1.06 .31
Legend fixation durationa 0.57 .35 0.30 .29
Saccades between targets 1.10 .30 1.50 .40
Saccades to legend 1.40 .80 0.90 .80

Note. Target data for the comparison task include both targets.
a Given in seconds.
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Method

Participants

Thirteen undergraduate psychology students from George
Mason University participated in this study for partial course
credit. None of the participants were color blind. All participants
had normal or correct-to-normal vision. The experiment lasted
approximately 25 min.

Materials

The stimuli consisted of 10 � 10 color grids and a legend. The
color grids and legends were constructed in the same way as in
Experiment 1, with scales consisting of 4, 10, and 20 colors for
each type of scale. The same four scales were used as in Experi-
ment 1: the ordered brightness scales, Greenscale and Grayscale,
and the multicolored scales, COAMPS and Rainbow. A total of
136 graphs was constructed (4 scale types � 34 [� 20 � 10 � 4]
graphs per scale type).

Procedure

The procedure was the same as the identification task in Exper-
iment 1.

Results

As Figure 4 suggests, participants responded faster to graphs
that were multicolored than to the brightness graphs, F(1, 12) �
5.1, MSE � 397.20, p � .05, �p

2 � .30. Mean response times with
multicolored scales were 1.9 s, 2.7 s, and 3.4 s on 4-, 10-, and
20-color scales, respectively; with the brightness scales they were
2.4 s, 3.0 s, and 3.5 s on 4-, 10-, and 20-color scales, respectively.
Linear trend analysis revealed that response time increased with
scale size, F(1, 12) � 30.47, MSE � 764.29, p � .0001, �p

2 � .72.

There was no interaction between type of scale and number of
colors, F(1, 12) � 2.62, MSE � 254.34, p � .10, �p

2 � .18.
As Figure 5 indicates, accuracy showed a somewhat similar

pattern. Mean accuracies with the multicolored scales were .98,
.81, and .59 with 4-, 10-, and 20-color scales, respectively, whereas
accuracies with the brightness scales were .87, .44, and .19 with 4-,
10-, and 20-color scales, respectively. Participants were much
more accurate on multicolored graphs than on brightness graphs,
F(1, 12) � 140.9, MSE � .01, p � .0001,�p

2 � .92. Linear trend
analysis revealed that accuracy decreased markedly as more colors
were on the scale, F(1, 12) � 399.1, MSE � .009, p � .0001, �p

2

� .97. However, the accuracy decreased at a faster rate for bright-
ness colors than for multicolored colors as shown by a significant
interaction, F(1, 12) � 44.98, MSE � 0.006, p � .001, �p

2 � .79.
As can be seen in Figure 5, this differential effect of set size on
accuracy occurred primarily between set sizes 4 and 10.

Discussion

These results replicated the finding of superior identification
with multicolored scales as compared to brightness scales across
highly unequal scale sizes. The only exception was the comparable
response times for the largest scale size. Identification perfor-
mance degraded markedly with increased scale size, especially for
brightness scales. These results, together with those of Experiment
1, suggest that multicolored scales of 10 or more colors should not
be used for identification tasks, and that brightness scales in
general are ill-suited for such tasks.

The linear relation between response times and scale size for
both scale types suggests that participants conducted serial
searches of the legend, even with the more discriminable multi-
colored scales. However, faster response times with multicolored
scales suggest that their superior discriminability permitted a faster
serial search relative to brightness scales (Carter, 1982; Smallman
& Boynton, 1990).

An alternate explanation for the effect of scale size on perfor-
mance may be that it reflects capacity limitations in working
memory (Cowan, 2001; Miller, 1956). This explanation assumes
that participants attempt to memorize the color-number associa-
tions. However, eye movement analyses in Experiment 1 with
seven-color scales and previous research (Carpenter & Shah, 1998;
Peebles & Cheng, 2003; Trafton et al., 2002) provide evidence that
people rely on perception (e.g., looking at the legend) rather than
working memory when using complex visualizations. Recall that
participants in Experiment 1 devoted approximately half of their
trial response times to examining the legend when performing
identification tasks with each scale type.

These conclusions will be further elaborated in the context of
the next experiment that used a similar parametric methodology
for the comparison task.

Experiment 3

This experiment was designed to explore both multicolored and
brightness scales on a comparison task with different-sized scales.

Method

Participants

Twenty-two undergraduate psychology students from George
Mason University participated in this study for partial course

Figure 4. Experiment 2 reaction time for the identification task for
different sized scales. Error bars are standard error of the mean. (A color
version of this figure is available on the web in supplemental materials.)
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credit. None of the participants were color blind. All participants
had normal or correct-to-normal vision. The experiment lasted
approximately 45 min.

Materials

The stimuli consisted of 10 � 10 color grids and a legend. The
color grids were constructed in the same way as in Experiment 1,
with scales consisting of 4, 10, and 20 colors for each of the four
scales tested. The same four scales were used as in the preceding
experiments: Greenscale and Grayscale brightness scales and
COAMPS and Rainbow multicolored scales. A total of 964 graphs
was constructed (4 scale types � 241 [� 6 � 45 � 190] graphs for
each scale type), but each participant was assigned only one
brightness and one multicolored scale, or a total of 482 trials. This
assignment was counterbalanced so that an equal number of par-
ticipants were tested on each scale.

Procedure

The procedure was the same as in the comparison task in
Experiment 1.

Results

As Figure 6 suggests, participants were faster to respond with
the brightness scales than with the multicolored scales, F(1, 21) �
53.027, MSE � 543.04, p � .001, �p

2 � .72. More surprising,
response times actually decreased slightly with increased scale
size, F(1, 21) � 4.46, MSE � 56.33, p � .05, �p

2 � .18. There was
a significant interaction between type of scale and number of
colors, F(1, 21) � 13.3, MSE � 45.62, p � .001, �p

2 � .39: The
brightness scales had a relatively constant reaction time, whereas
multicolored response times decreased slightly (by .27 s) as the
number of colors rose from 4 to 10.

Figure 7 shows that accuracy followed a somewhat similar
pattern. Participants were more accurate on the brightness graphs
than on the multicolored graphs, F(1, 21) � 19.8, MSE � 23, p �
.0001, �p

2 � .49. Overall, accuracy decreased as more colors were
on the scale, F(1, 21) � 17.4, MSE � 20.7, p � .0001, �p

2 � .40,

but there was a significant Scale Type � Scale Size interaction,
F(1, 21) � 6.2, MSE � 38, p � .05, �p

2 � .23. Brightness scales’
accuracy mirrored the response time data, staying relatively con-
stant across different scale sizes, whereas the multicolored scales’
accuracy diverged from their response times, decreasing slightly as
the number of colors on the scale increased. Thus, the slight
decrease in response times for the multicolored scales may reflect
a speed–accuracy trade-off.

Discussion

In contrast to the identification task, comparison task perfor-
mance was relatively robust in the face of increases in scale size,
especially for the brightness scales (.97, .97, and .95, for 4, 10, and
20 colors, respectively). Even the multicolored scales had fairly

Figure 5. Experiment 2 accuracy for the identification task for different
sized scales. Error bars are standard error of the mean. (A color version of
this figure is available on the web in supplemental materials.)

Figure 6. Experiment 3 reaction time for the comparison task for differ-
ent sized scales. Error bars are standard error of the mean. (A color version
of this figure is available on the web in supplemental materials.)

Figure 7. Experiment 3 accuracy for the comparison task for different
sized scales. Error bars are standard error of the mean. (A color version of
this figure is available on the web in supplemental materials.)
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high accuracies, except with the largest scales (.96, .94, .88,
respectively). Likewise, the typically found superiority of the
brightness scales over the multicolored scales on relative compar-
ison tasks was a robust finding over a wide range of scale sizes.
The sole exception was accuracy on the smallest, 4-color scales,
probably reflecting a ceiling effect. Taken together with Experi-
ment 2, these results demonstrate the robustness of the Scale
Type � Task interaction demonstrated in Experiment 1 with
7-color scales.

The absence of increased response times with increased scale
size has important, but differing, implications for the brightness
and multicolored scales. For the brightness scales (1.1 s, 1.1 s, and
1.2 s for 4-, 10-, and 20-color scales, respectively), this finding
supports the conclusion from Experiment 1, based on the analysis
of eye movements, that participants compared the two targets on
the grid directly with little reliance on the legend. This stability
suggests that the same process of comparing the two target stimuli
characterizes the process for scales of differing sizes. Although the
overall discriminability of the brightness values of the scale colors
diminishes with increased scale size, the reduced discriminability
imposed no added penalty and was clearly sufficient to support fast
accurate responses for all scale sizes.

In the case of the multicolored scales (2.3 s, 2.0 s, and 2.0 s for
4-, 10-, and 20-color scales, respectively) the response time trend
with comparison tasks stood in marked contrast to that in Exper-
iment 2 with identification tasks. In the latter, responses markedly
slowed with increased scale size, whereas in the present study with
comparison tasks, the response times sped up slightly with in-
creased scale size. This finding suggests that participants con-
ducted a parallel search of the legend when making comparisons.
Although it remains possible that participants also made deductive
conclusions after locating only one endpoint color on the legend or
sometimes responded based on remembered information, neither
of these processes would be unaffected by increased scale size. An
endpoint color, whether located visually or memorized, would
account for a diminishing proportion of the pairwise comparisons
as scale size increased (e.g., 50% with 4 colors vs. 10% with 20
colors). Likewise, memorization would become more difficult as
the set of colors to memorize increased. In contrast, relatively
constant speeds across different set sizes are commonly character-
ized in the visual search literature as evidence of parallel search,
whether studying color (Nagy & Sanchez, 1992) or visual search
more generally (Wolfe, 2003).

General Discussion

We have replicated and elaborated on previous findings (Mer-
win & Wickens, 1993; Phillips, 1982) of a Scale � Task interac-
tion for color scales: Namely, multicolored scales were faster and
more accurate than brightness scales on absolute-value identifica-
tion tasks, whereas brightness scales were faster and more accurate
than multicolored scales on relative comparison tasks. We have
replicated this interaction with a broad range of scale sizes, thus
providing evidence for its robustness. In addition, we have offered
a process explanation to explain the interaction. The hypothetical
process explanation offered on the basis of previous research in
Table 1 may now be expanded into the analysis summarized in
Table 4.

Experiment 1 explored this effect with seven-color scales while
analyzing eye movements. This analysis indicated that people
spent more time looking at the legend with brightness scales than
with multicolored scales when performing identifications, but
when making comparisons they spent roughly half the time look-
ing at the legend with brightness scales in comparison to multi-
colored scales. At the same time, they made more saccades be-
tween targets to make comparisons using brightness scales,
suggesting that they were making a direct comparison between the
target colors without relying very much on the legend.

Experiments 2 and 3 explored the impact of having more and
fewer colors in the scale and replicated the basic findings from
Experiment 1. In addition, Experiment 2 showed that accuracy of
identification decreased and reaction time increased as the number
of colors on the scale increased. The fact that response times
increased with increased scale size indicates that people did not
perform a parallel visual search of the legend, even with the more
discriminable multicolored scales. Instead, they seemed to perform
a serial search, though more efficiently with the more discrim-
inable multicolored scales than with the brightness scales.

In contrast, Experiment 3 showed that on comparison tasks,
accuracy and response times remained relatively constant for both
brightness scales and multicolored scales with increased scale size.
The finding for brightness scales suggests that the process of direct
comparison between target colors used with these scales is robust
against the decreasing discriminability that accompanies increased
scale size.

The results for multicolored scales suggests, interestingly, that
when making comparisons using the legend, people conducted a
parallel search of the legend, in contrast to the situation with
identification tasks using the same scales. The eye movement data
indicated that people used the legend to solve both identification
and comparison tasks when using multicolored scales. However,
the findings of Experiments 2 and 3 suggest that their process of
using the legend is very different in the two tasks. In the identifi-
cation task, they must retrieve the precise value corresponding to
a color in the legend; this requirement might constrain them to
perform a serial search. In the comparison task, in contrast, a more
approximate localization of the colors on the legend may often
suffice to determine which is higher/greater, and so a more effi-
cient parallel search may be employed. These results suggest that
the use of serial versus parallel search is not only determined by
the nature of the color scale, as other researchers have emphasized
(Nagy & Sanchez, 1992), but by task demands as well.

Following the location of approximate legend positions, people
can compare those positions spatially to arrive at a response,

Table 4
Expanded Explanation of Task � Scale Type Interaction (New
Features Italicized)

Multicolored scale Brightness scale

Identification task Easy: highly discriminable;
fast serial search of
legend

Hard: less discriminable;
slow serial search of
legend

Comparison task Hard: no/little perceived
ordering; parallel search
of legend

Easy: clear perceived
ordering; direct
comparison of targets
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without needing to extract numeric values from the legend. This
spatial strategy is comparable to the comparison strategy hypoth-
esized by Gillan and Lewis (1994) for graphs.

Practical Implications

If reliance on a legend is associated with inferior performance,
perhaps it would be best to eliminate the legend where possible
and place the numerical values directly within the visualization.
Indeed in designing graphs, that is the recommended practice,
except where it produces too much visual clutter (Kosslyn, 1994).
Thus, digits on maps result in far superior performance in com-
parison to a brightness representation of quantity for identification
and only slightly inferior performance to brightness for relative
comparisons (Phillips, De Lucia, & Skelton, 1975), but at the cost
of high clutter. Lines on maps, such as contour lines or isotherms,
reduce clutter compared to digits but at the cost of much inferior
relative comparisons compared to brightness coding (Phillips et
al., 1975). Thus, considerations of performance on some tasks
must be balanced against concerns about clutter, which can impair
performance on other tasks.

Because visual search of the legend is central to most of the
conditions we examined, efforts to facilitate legend search should
enhance the usability of color-coded visualizations. The function
of the legend in such visualizations is comparable to the function
of the y-axis in graphs as depicted in the componential model of
graph interpretation proposed by Gillan and Lewis (1994). These
authors proposed that placing labeled y-axes on both sides of a
graph may facilitate the search for the values of data points in the
graph. Similarly, it is possible that placing more than one copy of
the legend in the margins of a visualization may facilitate the
extraction of values.

Our results also highlighted the limitations of certain color
scales for identification tasks. Specifically, accuracy of identifica-
tions is significantly impacted once the size of multicolored scales
reaches 10 colors or more, whereas brightness scales appear ill-
suited in general for identification tasks. In contrast, both scale
types supported high accuracy on comparison tasks and perfor-
mance was fairly robust in the face of large increases in scale size.
Brightness scales distinguished themselves from multicolored
scales primarily by the faster speed of response they supported.

These experiments suggest that there is no perfect scale for
every task. If it is possible to know in advance what type of task
people will perform on a specific visualization, then the decision
about which type of scale to use is very clear: use a multicolored
scale for identification tasks and a brightness scale for comparison
tasks. However, if one wishes to support both identification of
absolute values and relative comparisons with a single color code,
then the decision of what type of scale to use may be governed by
one’s priorities. For example, arguing that “relative height is more
important than absolute height for children using atlases” (p.
1143), Phillips (1982) recommended using brightness scales for
school atlases despite their inferior accuracy for absolute height
judgments. However, if high accuracy on both tasks is one’s prime
concern, then multicolored scales would be preferred, despite the
slow performance we found they afford on relative comparison
tasks.

Contributions of Color Process Analysis

What practical contributions does a color process analysis offer?
First, by explaining why a particular type of color scale is useful
for a particular task, a process analysis points to ways in which
research may be applied in practice to the design of color scales.
If the superiority of multicolored scales for identification tasks lies
in the discriminability of the colors, then one would do well to
explore exactly how discriminable the colors should be and per-
haps develop color-difference standards to guide designers of color
scales to produce easy-to-use scales. Although the strength of
brightness scales lies in their encoding of order, it may also prove
to be important for efficient comparison that the brightness of their
colors be easily discriminable across the scale. Research that may
be applied to this includes findings that scales with perceptually
equal brightness differences conform to a logarithmic function of
luminosity L (Whittle, 1992), rather than to equal intervals of L.
Finally, evidence that stimulus size and background color/
brightness affects the gamut of recognizable color/brightness dif-
ferences (Brown & MacLeod, 1997; Carter & Carter, 1988) should
inform guidelines for the construction of the visualization itself. In
sum, process analyses point to relevant bodies of research that may
inform application design.

Second, process analyses may suggest new types of color scales.
To illustrate this, we may address a question that the present
research begs: Can a color scale be constructed that is useful for
both identification and comparison tasks by being both multicol-
ored and ordered by brightness? Spence et al. (1999) examined this
question only with regard to relative comparison (as well as
another quantitative task) but not identification tasks. Reviewing
the literature, they found conflicting evidence as to whether mul-
ticolored brightness scales are as effective as monochrome bright-
ness scales for quantitative tasks. They offered the perceptual
linearity hypothesis to resolve this question:

for a coding assignment to be perceptually linear, it must be possible
to form an additive weighted combination of the Cartesian coordinates
of each color in perceptual space such that the combination correlates
maximally with a linear sequence of numbers. (p. 397)

Spence et al. (1999) hypothesized that perceptual linearity is a
requirement for a multicolored brightness scale applied to quanti-
tative tasks. Perceptual linearity is only possible if luminosity is
more highly weighted than the two hue dimensions, since lumi-
nosity is a linear color attribute whereas hue is a circular attribute.
They offered generally supportive evidence that a multicolored
perceptually linear scale was as effective as a monochrome bright-
ness scale on quantitative tasks. It would be interesting to test their
multicolored perceptually linear scale on identification tasks. En-
couraging evidence from the visual search literature (Nagy, 1999)
suggests that the brightness variation in the scale should not
interfere with the hue-based search of the legend that is required
for identification tasks. Further, Jameson, Kaiwi, and Bamber
(2001) demonstrated the effectiveness of codes varying in both hue
and brightness on classification tasks. A multicolored ordered-
brightness scale that was effective for both identification and
relative comparison tasks may make it possible to avoid the sort of
compromises discussed above for school atlases.
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Conclusions

We have replicated previous research showing that multicolored
scales are superior to ordered brightness scales for supporting
identification tasks with complex visualizations, whereas ordered
brightness scales are superior to multicolored scales for supporting
relative comparisons, using scales of different sizes. In addition,
we have examined the processes by which the tasks are solved
with either scale type. By studying eye movements and by com-
paring performance on scales of different sizes, we found evidence
that (a) people perform identification tasks by means of a serial
visual search of the legend, whose speed is sensitive to the number
of scale colors and the discriminability of the colors, and (b)
people perform relative comparison tasks using different processes
for multicolored versus brightness scales. With multicolored
scales, they perform a parallel search of the legend whose speed is
relatively insensitive to the size of the scale, whereas with bright-
ness scales, people usually compare the colors on the visualization
directly, with little reference to the legend. This analysis may help
guide scale selection and visualization design by pointing to rel-
evant bodies of research to apply.
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