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Abstract

We present a novel way of accounting for similarity judgments. Our approach posits that simi-

larity stems from three main sources—familiarity, priming, and inherent perceptual likeness. Here,

we explore each of these constructs and demonstrate their individual and combined effectiveness

in explaining similarity judgments. Using these three measures, our account of similarity explains

ratings of simple, color-based perceptual stimuli that display asymmetry effects, as well as more

complicated perceptual stimuli with structural properties; more traditional approaches to similarity

solve one or the other and have difficulty accounting for both. Overall, our work demonstrates the

importance of each of these components of similarity in explaining similarity judgments, both

individually and together, and suggests important implications for other similarity approaches.
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1. Introduction

Similarity is a critical and pervasive part of human cognition (Medin, Goldstone, &

Gentner, 1993). Similarity measures, for example, are integral to object categorization

and classification (Nosofsky, 1992). Similarity is also pervasive in problem solving

(Novick, 1990), decision-making (Medin, Goldstone, & Markman, 1995), and memory

(Roediger, 1990). One interesting aspect of similarity is that asymmetries can arise when

making similarity judgments, even of very simple perceptual stimuli (Rosch, 1975; Tver-

sky, 1977). In the past, these asymmetries have been explained in several different ways.

Rosch (1975) argued that similarity is based on mapping stimuli onto one another and,

intuitively, non-prototypical stimuli map more easily onto prototypical stimuli than vice

versa, causing an asymmetry. Tversky (1977) argued that asymmetry is due to weighted
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feature matching, where the salience of features in the current context determines their

weight; others have also found general support for this approach (Glucksberg & Keysar,

1990; Medin et al., 1993).

These two explanations, however, assume that either there is a clear, inherent prototype

among the stimuli, or that stimuli have features with a clear, inherent order of saliency

(e.g., preferring the regularity of horizontal and vertical lines, or preferring forms that are

symmetric). They do not, however, provide any concrete explanations for why these

abstract measures may lead to prototypicality or saliency for simple stimuli with few fea-

tures, such as blocks of different colors.

The issue is further complicated when stimuli become more complex, such as when

comparing pairs of objects with shapes or symbols. In cases such as these, a variety of

evidence strongly supports structure-based analyses as key to judging similarity (Gold-

stone, 1994b; Larkey & Markman, 2005). Such approaches involve explicitly identifying

features and objects that correspond between stimuli; the quality of the mapping between

two stimuli is then the basis for a similarity rating.

As part of our work, we consider three experiments that explore this debate. The first

is by Polk, Behensky, Gonzalez, and Smith (2002), who present an experiment that

involves perceptual stimuli where the only feature is color, and where the color hues are

fairly similar. Despite this simplicity, the experiment showed a significant asymmetry in

similarity judgments between different colors when the colors were presented with differ-

ent frequencies during an irrelevant training task: Colors that had been trained on less
often were considered more similar to colors that had been trained on more often than

the other way around. Additionally, stimuli overall became more similar to one another

as the experiment progressed. Many prototype and feature matching theories have diffi-

culty explaining this data because of the lack of features to comparatively weight, and

the lack of an inherent a priori prototype. Because of the lack of structure in this experi-

ment, structure-mapping based approaches also have trouble accounting for it.

The second experiment involves more complicated visual stimuli, where participants

rate the similarity of two pairs of objects (Larkey & Markman, 2005). The pairs differ in

the colors, shapes, and spatial orientation of the individual objects. The pattern of the

similarity rankings of these stimuli sheds light on the relative importance of different

facets of the stimuli’s similarity; for example, features shared across pairs (such as each

pair having a red object, but with different shapes) as compared to objects shared across

pairs (such as each pair having a red square). A third experiment is also considered that

manipulated the features of schematic, bird-like stimuli (Goldstone, 1994b). Due to the

richer nature of these stimuli, approaches that do not account for structure (such as proto-

type- and feature-based theories) have difficulty explaining these results.

We will show that the data from all three experiments can be accounted for in a single

approach that uses a novel way of looking at similarity. Our approach posits that similar-

ity stems from three main cognitive sources: familiarity, priming, and inherent perceptual

likeness. The first, familiarity, represents the concept’s strength in memory, based on its

frequency and recency of use (Anderson, 2007). The second, priming, represents a con-

cept’s relationship with other concepts in memory, based on its past experiences with the
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concepts both together and apart (Anderson, 1983; B€ohm & Mehlhorn, 2009). Perceptual

likeness, the third value, represents similarity stemming purely from stimuli’s surface

appearance. For this measure, we utilize a standard measure for measuring color simili-

tude (Breslow, Ratwani, & Trafton, 2009; Breslow, Trafton, & Ratwani, 2009), as well as

a measure for shape resemblance derived from the biologically plausible vision system

LVis (O’Reilly, Wyatte, Herd, Mingus, & Jilk, 2013).

Other work has used priming and familiarity for similarity in more abstract terms. The

neural network written by Polk et al. (2002) relies on familiarity-based activation patterns

to produce asymmetries in similarity ratings. Tversky (1977)’s discussion of salience, and

Rosch (1975)’s on prototypicality can also be seen as broadly touching upon familiarity

or priming in similarity; other accounts suggesting priming also exist (Kozima & Furu-

gori, 1993; Ulhaque & Bahn, 1992). Some structural alignment approaches (e.g., Gold-

stone, 1994b; Larkey & Love, 2003) also use a form of priming between features and

objects that are used to determine similarity. Their use of these measures, however, is

more limited in scope than those we consider (for example, the amount of priming

between two features is not learned over time based on experience with different stimuli);

further, none of these approaches consider the purest, most basic aspect of similarity, per-

ceptual likeness (Smith & Heise, 1992). Other accounts do consider perceptual likeness

and familiarity, but not priming (Petrov & Anderson, 2005). Our work, in contrast, aims

to unify many of these different viewpoints by explaining them with the same set of

underlying mechanisms.

In sum, the primary contribution in this article is our claim that these three cognitive

measures, familiarity, priming, and perceptual likeness, together comprise the underlying

components of similarity. To support our argument, we perform an analysis of the rela-

tive, and combined, contribution of these measures to similarity ratings in the three exper-

iments introduced above. Viewing similarity in this way has the additional contribution

of providing an alternate explanation for structural alignment of simple stimuli: In our

approach, structural effects arise naturally out of implicit priming effects. This suggests

that the effort required for aligning structure representations when determining similarity

can be deferred to more complex cases, leaving simpler cases to be taken care of as part

of the process of perceiving and representing the stimuli. After introducing our measures,

and describing their fit to experimental data, we discuss this further, as well as discuss

how our approach allows us to better relate existing work in similarity to one another.

2. Similarity as priming, familiarity, and perception

Our approach posits that similarity derives from three key measures: familiarity, prim-

ing, and perceptual likeness. Familiarity represents how experienced one is with a con-

cept; in other words, how strong the concept is in memory. Familiarity changes over time

and with experience, weakening if the concept is not thought about often, and strengthen-

ing if it is. Intuitively, those items that are more familiar in memory are often viewed as

having higher similarity than less familiar concepts.
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Priming represents the strength of the relationship between an item and other items in

memory, such as other items being looked at. The strength between items is learned over

time, and it is based on how often items are thought about together (strengthening their

association) or separately (weakening it). Priming is also directional and potentially asym-

metric, in that two items can prime one another to different degrees.

Perceptual likeness, in turn, indicates the similarity of two items’ surface appearances,

such as how close their colors are or whether they are the same shape. This measure is

static and does not change with experience. Perceptual likeness plays an important part of

similarity by capturing trends and effects that are dependent purely on perceptual differ-

ences, such as color and shape.

Note that our work does not make any strong claims about how familiarity, priming,

and perception individually, or combined, are transformed into an overall similarity rat-

ing; we currently leave that work to others (e.g., Petrov & Anderson, 2005). Our goal, in

contrast, is to investigate how these components account for similarity, and how, together,

they can strongly explain many of the effects seen across a broad array of experiments.

We next describe in more detail the specifics of our similarity account, as well as the

framework in which we implement it, ACT-R/E (Trafton et al., 2013). ACT-R/E is an

embodied version of the ACT-R cognitive architecture (Anderson, 2007). By grounding

our approach in this existing, well-studied theory of cognition, we support our overarch-

ing desire to explain cognitive phenomena using cognitive process models, as well as

connect our work on similarity with a broad spectrum of other work done within the

ACT-R framework. We discuss these points further in the general discussion.

2.1. Cognitive framework for similarity

ACT-R is an integrated, process-level theory of human cognition in which a “produc-

tion system operates on a declarative memory” (Anderson, Bothell, Lebiere, & Matessa,

1998). The specifics of the operations depend on the levels of activation of individual

items in memory, which determine what memories will next become the focus of atten-

tion. This, in turn, affects how the production system operates, potentially altering the

future contents of declarative memory and future memory activation levels. Models writ-

ten in this framework capture the cognitive processes that people go through as they

undergo tasks, and can produce behaviors that can be quantitatively and qualitatively

compared to experimental data.

2.1.1. Memories and activation
Items in declarative memory are stored as slot-based, schema-like structures. They can

be used to represent a model’s goals, intermediate problem-state representations, or more

conceptual fact-based knowledge. Their slot values, or features, can be either primitive

(like strings or numbers) or pointers to other items in memory, potentially allowing a

hierarchical-like structure to occur. Central to ACT-R’s theory of cognition is its account

of memory activation, which has been shown to be a very successful predictor of human
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memory across a variety of domains (Anderson, 1983; Anderson et al., 1998; Schneider

& Anderson, 2011).

Intuitively, the activation of items in declarative memory depends both on how much

the item has been thought about in the past, as well as how related the item is to other

memories that are currently the focus of attention. Activation consists of three primary

components: activation strengthening, spreading activation, and noise. Activation

strengthening is a function of how frequently and recently the memory has been thought

about in the past, and it represents the model’s familiarity with a concept. It is designed

to represent the activation of an item in memory over longer periods of time. Spreading

activation, on the other hand, is temporary and context dependent, allowing memories

that are currently the focus of attention to activate, or prime, other related items for short

periods of time. Noise is a random component added in to model the noise of the human

brain. They are combined according to the following equation (Anderson, 2007):

Ai ¼ ASi þ
X
j

WjSji þ e ð1Þ

where Ai is the total activation of item i, ASi is the activation strengthening of item i,
Wj S ji is activation spread from item j to item i and sums over all items j that have
an outgoing association with i, and e is noise. Because the default in ACT-R is to

exclude noise, and its presence does not affect our results, we ignore noise in this

article.

Activation strengthening of a memory item i is calculated according to Anderson

(2007):

ASi ¼ ln
XR
r¼1

tr
�d

 !
ð2Þ

where R is the number of times item i has been referenced (e.g., was the focus of atten-

tion, or was explicitly thought about) in the past, tr is the time that has passed since the

rth reference, and d is the strengthening learning parameter, which defaults to 0.5. This
equation implies that a memory’s activation strengthening grows quickly in the early

stages of learning, and more slowly once it is already familiar. More subtly, a side-effect

of this equation is that intermediate problem-state representations have an undefined acti-

vation strengthening since they have not been thought about in the past. Once (or if) the

finalized forms of these intermediate representations are added to declarative memory,

they have a calculable activation strengthening. This side-effect is important for the sec-

ond and third experiments we model.

Spreading activation is spread along associations between memories. In addition to

considering what items are being referenced at any given time, it also considers what

items are in the current context. The current context consists of both those items being

referenced, as well as the set of items in slot values of the items being referenced that

are under consideration. For example, when referencing a goal to compare blocks and
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considering a color in one of its slots, the goal would be referenced, and both the goal

itself, as well as the color, would be in the context.

Associations are directional, and they are created from an item j to an item i when
item j is in the current context when item i is being referenced. Note that if both j and i
are being referenced, an association is created in each direction. Once established, associ-

ations have a corresponding strength value which affects how much activation is passed

along the association from item j to item i. Association strengths, intuitively, reflect how

strongly item j, when currently being referenced or in context, predicts that item i will be
referenced next.

The equations for the associative strength from an item j to an item i in memory are

(Harrison, 2014):

Sji ¼ mas � e �1
al�Nji ð3Þ

Nji ¼ f ðCjRiÞ
f ðCjÞ � f ðCjRiÞ þ 1

ð4Þ

These equations reflect two parameters: mas, the maximum associative strength parame-

ter; and al, the associative learning rate. Neither of the two parameters has a default

value. The function f is a count function, tallying the number of times that item j has
been in the current context, either independently (f(Cj)) or at the same time that item i
has been referenced (f(CjRi)).

Sji approaches its maximum value of mas when Nji tends to infinity, and it approaches

its minimum value of 0 when Nji tends to 0. Intuitively, this means that an association

from item j to item i is strengthened when j and i are referenced or (or i referenced while

j is in context) at the same time; conversely, it is weakened when j is referenced (or in

context) without i. Note that while associations may be present in both directions (i.e.,

item j activates item i and vice versa), the associations may be of different strengths if

the items have not always been referenced or been in context at the same time, or with

the same frequency.

These equations are a non-standard adaptation of ACT-R’s canonical Bayesian-based

priming mechanisms (Anderson & Lebiere, 1998; Anderson & Reder, 1999). We use this

adaptation in order to account for the large numbers of associations and objects needed

by the experiments we consider here, which ACT-R’s original formulation is unable to

do. These adapted equations have been successful in modeling associations and priming

across a variety of domains (Harrison & Trafton, 2010; Hiatt & Trafton, 2015a,b; Law-

son, Hiatt, & Trafton, 2014; Trafton et al., 2013).

Spreading activation sources from a model’s goal. The goal has a fixed amount of

source activation which it first divides, equally, among all items j which have an outgoing
association with the goal item i (such as a slot value of item i, or an item that has co-

occurred with item i in the past). Note that this first step is in the opposite direction of

spreading activation—the source activation is divided among items with incoming, not
outgoing, connections to the goal.
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These j items then use this allocated activation, Wj, as the basis of spreading activation

along all of their outgoing associations; the higher Wj an item has, the more activation it

spreads to the connected items. Ultimately, each item i receives ∑jWjSji in activation from

each item j that has an outgoing association to it, as indicated in Eq. 1.

The two parts to priming, Wj and Sji, allow it to capture different aspects of similarity.

For example, it can capture more contextual similarity (due to different allocations of

source activation), where the similarity of items’ change a depending on the context in

which they are situated. It can also capture more prototypical- and structure-based simi-

larity (due to differences in translating source activation to spreading activation). As we

will show, this allows models in this framework to explain a variety of effects in similar-

ity ratings.

2.1.2. Perceptual likeness
To quantify the perceptual likeness, or resemblance, between two colors, we rely on a

standard measure of color similitude proposed by Breslow, Ratwani, et al. (2009). They

introduced a component to ACT-R which supports high-level color processing that can

detect both color similitude, as well as brightness differences between colors. It is based

on the CIEDE2000 algorithm (CIE, 2001), and it has been shown to match well with

human participant data.

To quantify the likeness of shapes, we rely on LVis, the vision model of the Emer-

gent/Leabra system (O’Reilly & Munakata, 2000; O’Reilly et al., 2013). LVis is a neural

network-based approach to biologically plausible computer vision. LVis does not consider

color as part of its analysis; it pays attention only to the outlines of objects. Its network

has three hidden layers, represented as matrices, that are organized similarly to the human

visual cortex. In particular, its highest layer, the IT layer, has a view-specific encoding,

where different parts of the matrix respond selectively to features like corners, angles,

and curves with specific orientations. The likeness between two images (such as the outli-

nes of two shapes) is calculated using a simple Euclidean distance measure between their

numeric IT matrices. In some ways, this is reminiscent of work by Vinokurov, Lebiere,

Herd, and O’Reilly (2011), who represented LVis IT matrices as concepts in ACT-R and

classified them using partial-matching and blending algorithms.

If each stimulus only has one color, then using the color likeness measure is straight-

forward. If each stimulus has more than one, we make the assumption that all pair-wise

combinations of color should be evaluated. For shape likeness, we assume that the shapes

are evaluated in concert; that is, one IT matrix is constructed for the first stimulus as a

whole, and it is compared to the IT matrix for the other stimulus.

2.1.3. Perception and action
ACT-R supports interacting with the world via limited perception and action. Models

can view very simple items (such as colored blobs and text) on a simulated computer

monitor, and they are provided with the items’ appropriate symbolic representations.

Models can act on the world by pushing buttons on a simulated keyboard.
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3. Rating similarity of color-based stimuli

The first experiment we model in this paper studied asymmetries in similarity rat-

ings of simple perceptual stimuli. There were three phases to the experiment: a pre-

test phase, a training phase, and a post-test phase (Polk et al., 2002). In the pre-test

phase, participants viewed two patches of different colors and were asked to rate their

similarity on a scale of 0 to 9 (0 as highly dissimilar, 9 as highly similar). The col-

ors were five different hues of green and five different hues of blue, designated as

blue1, . . ., blue5, and green1, . . ., green5. Greens and blues were never compared to

each other; only hues of the same color were shown concurrently. During a trial, the

stimuli were presented as part of a text question that emphasized directionality in

the judgment: “How similar is (left color patch) to (right color patch)?” Underneath

the color blocks were the labels “Blue1” and “Blue2” (or, if appropriate, “Green1”

and “Green2”). Each block was 140 9 140 pixels, and the sentence was centered both

horizontally and vertically. Once a user entered a rating (by pressing a key from “0”

to “9”), the screen was cleared for 500 ms before the next comparison appeared. Each

pair of colors was presented twice in each direction for a total of four times each.

The order in which the pairs were presented was randomized, except that the same

hue was not present in consecutive trials.

In the middle, training, phase, participants saw two patches of the same hue and color

but different sizes (125 9 125, 131 9 131, 138 9 138 and 144 9 144 pixels, appearing

with equal probability) and were asked to specify which patch was larger. The key part

of the experiment is that, during the training phase, two of the five green hues and two of

the five blue hues were presented 10 times more frequently than the others, 110 times

instead of 11. Half the participants, called “group 1,” saw blue1, blue2, green1, and

green2 with a higher frequency; the other half, “group 2,” saw blue4, blue5, green4, and
green5 presented more often.

The third phase was a second testing phase that was an exact replication of the first

phase. Thirty-five participants’ data were analyzed. For more details on the experiment,

see Polk et al. (2002).

The experiment produced two main results. First, the similarity ratings were

significantly higher in the post-test than in the pre-test. Second, the pre- and post-test

results each exhibited different characteristics for “forward” (less frequent color on the

left, more frequent color on the right) versus “backward” (more frequent color on

the left, less frequent color on the right) comparisons. In the pre-test, the ratings

were symmetric, with no significant difference between ratings made in the different

directions. In the post-test, however, the similarity ratings showed a significant asym-

metry effect: Specifically, forward comparisons were judged as significantly more sim-

ilar than backward comparisons. There were also non-significant trends in the data

reflecting differences stemming from color and group; specifically, group 1’s ratings

were lower, overall, than group 2’s, and the ratings for green were, overall, lower

than for blue.
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3.1. Model

Our model of this experiment is quite simple. It starts out with no a priori declarative
memories, but with the procedural knowledge it needs to complete the task. At the begin-

ning of each trial, the model has the goal of completing the trial by rating the similarity

of the two objects, or comparing their heights, as appropriate. Colors are represented as

memory items with numeric slots for the colors’ RGB values, a very simple way to repre-

sent them. Blocks are represented simply, as well, including slots for their location on the

computer “screen” as well as their color.

For each trial during the two testing phases, the model follows the experiment direc-

tions by looking at the color block on the left. Once the model sees the left block, it

retrieves the block’s color from memory and looks for the block on the right. Then, when

the model sees the block on the right, it retrieves that block’s color from memory as well.

Once the model is thinking about both colors, it proceeds to rate the colors’ similarity

using familiarity, priming, and perception.

Because of the comparison directionality inherent in the study, when considering

familiarity and priming, the model considers only the stimulus being compared to; here,

the stimulus on the right. To determine its rating, then, the model considers the percep-

tual likeness of the two colors, the familiarity of the right color, and the priming of the

right color. More specifically, the model calculates the RGB similitude of the two colors

and looks at the total activation (both strengthening and spreading) of the right color at

the time of the judgment. Once the model has determined these measures, it presses a

key to finish the trial and waits for the next stimuli to appear.

Note that color is considered here by familiarity, priming, and perceptual likeness in

qualitatively different ways. Familiarity and priming consider color symbolically, in terms

of the concept of the color. Perceptual likeness, in contrast, considers colors at a lower

level, by looking, mathematically, at the similitude of their RGB values.

During a training trial, the model first looks at the color block on the left. While con-

tinuing to think about this block, it looks for another block of the same color. Once it

sees the right block, the model compares their heights and responds accordingly.

During each trial, many associations are created between the many items involved.

Key to our discussion here, during a testing trial, associations are created (or strength-

ened) in both directions between each of the colors and the current goal, as well as

between the two colors. During a training trial, an association is created (or strengthened)

from the color to the current goal. Fig. 1 shows this in diagrammatic form.

In terms of parameters, the associative learning rate, which affects the rate at which asso-

ciations are strengthened, was set to 6.5, which represents a fairly brisk rate of learning.

There is no standard value for this parameter. The strengthening learning parameter was set

to 0.4 instead of its default of 0.5. All other parameters were set to their default values.

3.1.1. Model explanations
First, familiarity accounts for why later comparisons are, overall, more similar than

earlier comparisons. In the beginning of the experiment, colors do not have a very high
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strengthening activation. During the pre-test, however, their activation increases as the col-

ors are seen and considered many times. Throughout the training phase, the colors’ strength-

ening activations decay a little, since the colors are not explicitly referenced. Then, during

the post-test, strengthening activation values again increase, surpassing their pre-test values

and leading to higher overall similarity ratings in the post-test than in the pre-test. Since all

colors are shown equally during the pre-test and post-test phases, however, familiarity does

not account for any asymmetry effect or any other color-specific effects.

As we have mentioned before, associations between two items can have different

strengths in the two different directions, potentially causing asymmetries to arise in the

amount of activation spread along them. Consider, on an intuitive level, Fig. 1b. Here, as

its greater number of associations implies, blue1 has been in context more times than

blue5; this means that the association blue1 ? blue5 is weaker than the association

blue5 ? blue1. And while blue1 and blue5 are primed by items other than each other,

such as from the goal, the amount of this other priming is the same (subject to ordering

affects). Therefore, blue1 will, on average, receive more priming than blue5 due to the

fact that it has appeared, in the past, in more contexts.

As a result of this asymmetry, priming in the model explains the different effects for

the pre- and post-tests. For the pre-test, the model suggests that differences in similarity

ratings of forward and backward comparisons are based solely on ordering effects of the

stimuli. Given enough participants, these ordering effects average out over time to result

in pre-test forward and backward comparisons that are equal. For the post-test, however,

less frequent colors will prime more frequent colors more than the frequent colors will

prime them back; that is, priming in the model accounts for how forward comparisons

are ranked as more similar than backward comparisons.

Perceptual likeness, in turn, accounts for color-specific effects stemming from the dif-

ferences between the green and blue hues. It does not explain differences depending on

the direction of the comparison, or on whether the test is a pre- or post-test.

(a) (b)

Fig. 1. Key associations at various phases of model execution. Here, the model performed two pre-test trials

(with colors blue5/blue1, and blue1/blue2, respectively), and one training trial (where blue1 is the color).

Note that in order to maintain clarity, this diagram is simplified from the model’s actual associative network

(e.g., it does not contain associations involving blocks, which do not affect priming here). (a) Key associa-

tions after 1 testing trial. (b) Key associations after 2 testing trials and 1 training trial.
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3.1.2. Model fit
In addition to the experimental results published in the original article (Polk et al.,

2002), we also examined more detailed aggregate data provided to us by the authors. The

data included the averages, for each participant, of ratings for trials of each condition

(e.g., the average rating for each participant of all pre-test forward trials of blue hue,

etc.). Since our model is sensitive to the order in which stimuli are presented, we used

our model to simulate data from 1,000 experimental runs in order to allow effects to bet-

ter converge on the model’s true predictions. Each experimental run was generated

according to the original study’s methodology.

One issue with modeling similarity studies is the fact that they often use Likert rating

scales as dependent measures. Our goal is to understand the possible existence and

strength of the relationships between familiarity, priming, perception, and similarity;

therefore, we used a theoretically light method (linear regression) of converting these

measures’ values to Likert ratings. Specifically, we assumed each participant has their

own individual transformation function between the three similarity measures and their

corresponding similarity ratings. We therefore created a linear regression model for each

participant that best matched the three measures, averaged across the 1,000 model runs,

to each participant’s aggregate similarity ratings. We also created analogous linear models

that translated each of the three measures, on their own, to each of the participants’ simi-

larity ratings, in order to investigate their individual contributions to explaining the data.

When looking at the combined contribution of familiarity, priming, and perceptual

likeness, we begin by summing the familiarity and priming activation values into a single

activation value. This assumption is imposed, and supported, by the cognitive framework

we use: Part of ACT-R’s theory is that activation is always considered as a whole. Then,

color similitude is considered a second independent variable for the linear regression

model. All together, familiarity, priming and perceptual likeness capture the data extre-

mely well, with R2 = .924, as shown in Fig. 2.

Both familiarity and perceptual likeness, alone, were significant predictors of the

human data (familiarity: p < .05; color: p < .01). Familiarity captured the large differ-

ence between the pre- and post-tests, but it did not capture either the differences in condi-

tions stemming from color or the asymmetry in the post-test (Fig. 3a). In contrast,

perceptual likeness captured the differences between the blue/green and group1/group2

conditions, but it did not capture any of the effects between the pre- and post-tests, or

between forward and backward comparisons (Fig. 3b).

Priming, in contrast, strongly explains the post-test asymmetry. Despite this, it was not

found to be a significant predictor of the data as a whole (p = .231), in large part because

it does not capture the significant increase in ratings between the pre-test and the post-test

(Fig. 4). Importantly, however, because it does capture the post-test asymmetry, it signifi-

cantly increases the fit of our approach, overall, to the data (R2 = .877 without priming

and, as reported earlier, .924 with). Additionally, as we will see, it proves to be an impor-

tant part of our account for Experiment 2 and 3. Overall, therefore, we conclude that

familiarity, priming, and perceptual likeness are all important pieces of similarity in this

experiment and, together, do an excellent job of accounting for the data.
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3.2. Discussion

In this section, we described a model that uses our account of similarity, including

familiarity, priming, and perceptual likeness, to explain the similarity ratings of different

pairs of simple perceptual stimuli, and showed a strong account of the experimental data

presented by Polk et al. (2002). First, familiarity explains why the ratings increase over

time. As the stimuli appear repeatedly throughout the experiment, the stimuli’s familiari-

ties are strengthened, leading to higher similarity ratings. The second significant effect,

the post-test asymmetry, is explained via priming. Perceptual likeness was also found to

be a strong predictor of the data, accounting for the various trends in the data between

colors and groups.
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Fig. 2. Average similarity ratings of conditions separated by frequency manipulation and color. Graphs

include data from the experiment itself, as well as the ratings generated by the model. (a) Average similarity

ratings of various conditions of forward and backward comparisons for both the pre-test (before stimuli fre-

quency was manipulated) and the post-test (after stimuli frequency was manipulated). (b) Average similarity

ratings of various conditions of group1 and group2 comparisons for both blue and green hues.
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Because of the extremely simple nature of the stimuli, the choice of representation of

the color blocks makes little difference to our model’s results. Instead, they are affected

by the blocks’ color values (affecting the perceptual likeness measure) and the frequency

with which the colors appear (affecting both the familiarity and priming measures).
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Fig. 3. Average similarity ratings of forward and backward comparisons for both the pre-test (before stimuli

frequency was manipulated) and the post-test (after stimuli frequency was manipulated) for activation

strengthening and color. Graphs include data from the experiment itself, as well as the ratings generated by

the model. Importantly, neither activation strengthening nor color captures the post-test asymmetry. (a) Aver-

age similarity rating of the various conditions of forward and backward comparisons for both the pre-test (be-

fore stimuli frequency was manipulated) and the post-test (after stimuli frequency was manipulated) when

activation strengthening was used as the sole similarity measure. (b) Average similarity ratings of the various

conditions of forward and backward comparisons for both the pre-test (before stimuli frequency was manipu-

lated) and the post-test (after stimuli frequency was manipulated) when color similitude was used as the sole

similarity measure.
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Fig. 4. Average similarity ratings of forward and backward comparisons for both the pre-test (before stimuli

frequency was manipulated) and the post-test (after stimuli frequency was manipulated) for priming. Graphs

include data from the experiment itself, as well as the ratings generated by the model. Priming explains the

asymmetry in the post-test condition, but not the increase in ratings between the pre-test and post-test.
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To account for these results, the study’s authors implemented a neural network that

simulated the asymmetry effect by measuring the ease with which the network switches

between different activation patterns; those that are more stable (e.g., high-frequency pat-

terns) were easier to assimilate to. Using this single similarity measure, their model quali-

tatively accounts for the asymmetry effect; however, it is not described as capturing

either the increased ratings over time or the color effect, nor is a quantitative comparison

performed. Our work, therefore, provides a stronger account of this data, since it qualita-

tively and quantitatively explains all three effects in a single, coherent model.

Finally, it is important to note that our approach does not unilaterally predict that simi-

larity increases over time; in fact, there is evidence to the contrary (e.g., Goldstone,

1994a; Levin & Beale, 2000; Sjoberg, 1972). Our model allows for this effect. The aver-

age strength of priming in many cases decreases with long-term exposure to the items

being compared. Although in this experiment it is balanced by the higher activation

strengthening, in other cases it could ultimately lead to lower similarity.

4. Rating similarity of pairs of perceptual stimuli

The second experiment we consider involved similarity judgments of pairs of percep-

tual stimuli (Larkey & Markman, 2005). Each object in a pair had two distinct features: a

color (red, yellow, green, or blue) and a shape (circle, square, triangle, or star). In each

trial, participants were shown two pairs of objects simultaneously and were asked to rate

the pairs’ similarity on a scale of 1 (low) to 6 (high). The colors and shapes of the

objects in the first pair were selected randomly (and always were different for the two

objects), as was whether the two objects were arranged horizontally or vertically. The

second pair reflected three systematic modifications of the first pair. First, the spatial rela-

tionship between the two objects (i.e., horizontal vs. vertical) was the same on half of the

trials and different on half of the trials. Second and third, the colors and shapes of the

objects in the second pair were each generated based on a manipulation of the shapes and

colors of the objects in the first pair.

To explain the shape and color manipulations, the authors of the study abstractly repre-

sent a pair’s features using letters. The first object pair always has its colors and shapes

each represented as A for the top or left object and B for the bottom or right object. In

other words, the first object pair’s colors are referred to as “AB” (A color for the top/left

object, B color for the bottom/right object). The first object pair’s shapes are referred to

as “AB” in the same way.

Then, there are nine possible manipulations for each of color and shape to create the

second pair: AB (nothing changed), BA (switch values), AA (copy the first value), BB

(copy the second value), AC (replace the second value with a new value), CB (replace

the first value with a new value), CA (replace the second value and switch values), BC

(replace the first value and switch values), and CD (replace both values) (see Fig. 5).

The three manipulations (color manipulation, shape manipulation, and spatial relation-

ship manipulation) happened independently, leading to a total number of 162 unique
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conditions. A sample trial is shown in Fig. 6. We denote conditions as “color manipula-

tion/shape manipulation/spatial relationship manipulation” (e.g., CA/CB/different for the

manipulation in Fig. 6). In the original article, the data are collapsed across the two spa-

tial relationship manipulations; the condition CA/CB, it follows, would denote the color

manipulation CA, the color manipulation CB, and both the same and different spatial

relationship conditions.

Each object was approximately 3 cm 9 3 cm when displayed on the monitor. Objects

within each pair were displayed as 1 cm apart. The pairs’ locations were selected ran-

domly subject to the constraint that they be 11 cm apart. One final note is that when the

spatial relation was different, the object on top (or left) of the first pair was randomly

chosen to “correspond” (for the purposes of the feature manipulations) to either the right

or left (or top or bottom) of the second pair.

There was only one phase to the experiment, during which each participant was pre-

sented with one pair from each of the 162 conditions in random order and was asked to

rate the pairs’ similarity. There were 58 participants in the study. In the original article,

the experiment was duplicated with texture and shape instead of color and shape, with

nearly identical results; in this paper we consider only data from the experiment that

involved color.

In their analysis, the authors consider only a subset of the data: They consider one

group of trials where at least one feature manipulation was AB (whether for color or

shape), and another group where at least one feature manipulation was BA. They also

Fig. 5. The nine possible methods for manipulating the shape feature. The shapes of the first pair of objects

are always different and are considered shapes “A” and “B”; with this notation, they are then methodically

manipulated. The color feature (not shown) is done in an analogous way. (This figure is adapted from Larkey

& Markman, 2005.)
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combine the manipulations AA and BB, AC and CB, and CA and CB, arguing that they

are functionally equivalent; we denote the combined conditions as {AA,BB}, etc. In our

analysis, we adopt these conventions, but also provide statistics showing our fit to all of

the data without combining these conditions.

The important results of this experiment, as the authors argue, are the relative order-

ings of AB/BA, AB/{AA,BB}, and AB/{AC,CB}, and, correspondingly, BA/AB, BA/

{AA,BB}, and BA/{AC,CB}. The ordering of these conditions helps to shed light on the

relative importance of different facets of the stimuli’s similarity. For example, one could

imagine that a full shared object between pairs (AB/{AC,CB}) would result in a higher

similarity than stimuli where all features are the same but no object is shared (AB/BA)

(both are represented graphically in Fig. 7); the opposite seems equally plausible.

Accordingly, the authors’ primary analysis concerns the ordinal rankings of the similar-

ity ratings for these different conditions, shown in Table 1. The first column shows the

Fig. 6. A possible stimulus pair. Here, the color manipulation is CA and the shape manipulation is CB. In

addition, the spatial relationship of the pairs is different. We denote this condition as CA/CB/different.

Fig. 7. Two stimuli examples. The first shows “AB/BA,” where color’s manipulation is “AB” and shape’s is

“BA”; the second shows “AB/AC,” where color’s manipulation is “AB” and shape’s is “AC.”

Table 1

Ordinal relationships between manipulations when at least one manipulation is AB (first column) and at least

one is BA (second column)

AB BA
AB BA
BA AB

{AA,BB} {AA,BB}
{AC,CB} {CA,BC}
{CA,BC} {AC,CB}

CD CD

Notes. For example, column 1 row 5, “{CA,BC},” indicates data where either: shape’s manipulation was AB

and color’s manipulation was {CA,BC}, or shape’s was {CA,BC} and color’s was AB. These stimuli earned

higher ratings, although not significantly so, than data where either: shape’s manipulation was AB and color’s

manipulation was CD; or shape’s was CD and color’s was AB. Adapted from (Larkey & Markman, 2005).
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rankings for data where at least one manipulation is AB (whether for color or shape); the

second, where at least one manipulation is BA. For example, column 1 row 5, “{CA,
BC},” indicates data where either shape’s manipulation was AB and color’s was {CA/
BC}, or shape’s manipulation was {CA,BC} and color’s was AB. The conditions in the

column are sorted in decreasing order based on their average similarity ratings by partici-

pants. Horizontal lines are present between conditions that were found to be significantly

different from one another. Not surprisingly, the results suggest that both shared features

and shared objects influence similarity judgments.

4.1. Model

The model has a similar simple structure as the model for Experiment 1, with no a pri-
ori declarative memories, but with its representations and task knowledge adapted for the

more complex task. The model also uses a simple representation for the stimuli that is

characteristic of the hierarchical representations used by many structure-based approaches

(Goldstone, 1994b; Larkey & Love, 2003). Individual objects are represented with two

slots: shape and color. A pair’s representation also has two slots, corresponding to the

two objects in that pair. The model builds these representations in a straightforward way,

creating them as it looks at the objects one by one.

For each trial, the model has the goal of rating the similarity of the two pairs of stim-

uli. The model begins by finding the object closest to the upper left corner of the screen.

It creates an intermediate representation of it, filling in the object’s color and shape as

appropriate, and adds the final representation to its declarative memory. It repeats this for

the second object. The model then creates an intermediate representation of the pair,

retrieves each object, and adds each object to the pair’s representation. After adding the

first pair to its declarative memory, it repeats this process for the second pair. Before add-

ing the second pair to declarative memory, however, it retrieves the first pair from mem-

ory so it can compare the two.

Unlike in Experiment 1, the comparisons in this study are not given an explicit direc-

tion. Therefore, when considering familiarity and priming, we summed together the

strengthening and spreading activations of both pairs.

This model’s measure of perceptual likeness is more complicated than the measure of

the previous model due to its more complicated stimuli. Prior to the experiment starting,

the LVis vision system is trained to recognize, individually, each of the four shapes

involved in the stimuli. As part of perceptual likeness, the model calculates the resem-

blance of each of the six pairwise-combinations of the four objects’ colors using the pre-

viously discussed color similitude measure. For shape likeness, the model first creates an

image for each pair depicting the outline of the two shapes in the appropriate configura-

tion, and then uses LVis to generate, and calculate the likeness between, the two images’

numeric IT matrix representations (described previously). Note that while color and shape

are considered by both priming and perceptual likeness, then, the measures considers

them in a qualitatively different way. Priming considers color and shape symbolically, in

terms of the concept of the color or shape. The perceptual likeness measures, in contrast,
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consider them at a lower level, either by looking, mathematically, at their RGB values, or

by numerically considering how perceptually similar their shapes are.

So, to summarize, when comparing two stimuli, the model considers: how familiar

each pair it sees is, to what degree each pair is primed, and how perceptually like each

other the two pairs are. Once the model has found these measures, it virtually presses a

key to finish the trial, adds the second pair to memory, and waits for the next one to

begin.

During each trial, many associations are created between the many items involved.

Pertinent to our discussion here, the goal becomes associated with every item associated

with completing the task (e.g., colors, shapes, objects, pairs). Therefore, in trials with

more unique colors and more unique shapes (such as if no two objects have the same

color or shape), the goal has more incoming connections; in trials with fewer unique col-

ors, fewer shapes and fewer distinct objects (such as if two or more objects have the

same color, shape, or both), the goal has fewer incoming connections. This is illustrated

in Fig. 8. Additionally, each pair has an incoming association from its component shapes,

colors, and objects. This model used the same parameters as the previous model.

4.1.1. Model explanations
While, in theory, familiarity sheds light on similarity for this experiment, in practice it

does so in a clumsy way. Familiarity for the second pair, first and foremost, is not mean-

ingful at the time of judgment because it has not yet been added to declarative memory.

Familiarity for the first pair, however, has, and in principle it should provide some insight

into similarity for this experiment. The familiarity of the first pair at the time of judgment

(a) (b)

Fig. 8. Two figures showing the contrast between the goal’s incoming associations in different conditions.

Source activation is divided among incoming associations, so the individual memories in (a) will receive less

source activation than those in (b). Note that in order to maintain clarity, this diagram shows only a portion

of the model’s actual associative network (e.g., it does not contain outgoing associations from the goal, or

associations between colors, shapes, and pairs). (a) Incoming associations to the goal when all pairs are made

of unique features (CD/CD condition). (b) Incoming associations to the goal when pairs have overlapping fea-

tures (AB/AA condition). Grayed out boxes indicate repeated items, for clarity.
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depends, in part, on how long it takes to build up the representation of the second pair:

The faster the second representation is built, the less time will have passed since the first

pair was last thought about, and so the more familiar it will be when judging the similar-

ity of the pairs. The time it takes to build up this representation depends, in turn, on how

strong the colors, shapes, and objects are in memory. Thus, in conditions with more col-

ors, shapes, and objects in common, those items can be quickly accessed, and the second

representation can be built up fairly briskly, leading to a higher familiarity for the first

pair. In conditions with few common colors, shapes, and objects, the second representa-

tion takes longer to build, and the first pair will have a lower familiarity.

This account, however, is muddled because familiarity depends on an item’s entire his-

tory in memory. Because of the limited number of possible colors and shapes, a trial’s

colors, shapes, objects, and pairs are very likely to have been seen before, leading to

familiarity being very dependent not only on the shared features of the current pair of

objects, but also on whether those features were present in recent trials. To put it another

way, familiarity here is very dependent on ordering effects, and we expect that in reality

those ordering effects will obfuscate any meaningful contribution of familiarity to under-

standing this experiment.

Priming also meaningfully explains the data’s trends, and it does so regardless of

ordering effects. Each pair, in general, has the same number of concepts that spread acti-

vation to it: the goal, and the features and objects that are part of it. The amount of

spreading activation that each pair receives, then, is dependent largely on the amount of

source activation allocated to each of these concepts. The source activation, in turn,

depends on the total number of incoming connections to the goal.

To illustrate, in conditions like AB/AA, where the goal has a low number of incoming

associations (due to repeated colors, shapes, or objects; Fig. 8b), pairs will receive the

most amount of spreading activation; during a CD/CD trial (Fig. 8a), where the goal has

the most number of incoming associations from non-repeated colors, shapes, and objects,

pairs will receive the least amount. Priming provides much useful information, then, for

similarity in this experiment—it can implicitly account for both feature matches (i.e.,

repeated colors and/or shapes) and higher-level object matches (i.e., repeated objects).

This means that, qualitatively, the similarity in our model between two pairs depends

almost entirely on the total number of unique colors, shapes, and objects present in the

scene.

The exception to this characterization is when there is a repeated color, shape, or

object within a pair. Here, the pair itself has fewer incoming associations (because the

duplicate color, shape, or object is only connected to the pair once), but that association

has a stronger strength (because the repeated item has been thought about with the pair

more often). Overall, this results in a gently dampened priming value for that pair. While

not critical to understanding this experiment’s trends, it becomes important in the next

experiment we model (Experiment 3).

Recall that the shape likeness measure compares the perceptual resemblance of the

pairs of shapes. In general, then, those pairs that have the same shapes with the same spa-

tial orientation are measured as the most similar, because their numeric IT matrices will
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be more similar to one another. Following that, again generally, pairs that have shapes in

common are measured as more similar than those that do not. In addition, pairs with

shapes that have similar visual attributes (such as a triangle and a star both having cor-

ners) are also rated as relatively more similar than those with shapes without such attri-

butes in common (such as circle and triangle). Shape, then, accounts for the visual

likeness of the pairs overall.

Color likeness, as we describe above, is based on the color resemblance of the pair-

wise-combinations of the objects in the two pairs of stimuli. Therefore, when considering

only color, the pairs in conditions with the most uniform colors (such as the AA and BB

color manipulations) are, intuitively, rated as most similar, because the pairwise-combina-

tions of their colors will include more cases where the two colors are the same. It follows

that pairs from conditions that introduce a third (or fourth) color would be rated as less

similar. As with shape, color accounts for similarity stemming from the diversity of the

visual scene overall, but it does not give any intuition about higher level matches.

4.1.2. Model fit
In addition to the experimental results published in the original article (Larkey &

Markman, 2005), the authors also provided us with the exact stimuli that each of the 58

study participants were shown. This allowed us to very faithfully replicate the experiment

to see how well our model’s similarity ratings matched those of the original study partici-

pants. We therefore ran the model 58 times, once per participant in the original study,

using the same stimuli that the participants saw.

We evaluated the similarity measures using the same methodology as in the previous

experiment. To test the model’s fit, we assumed each participant has an individual trans-

formation function between the three similarity measures and their corresponding similar-

ity ratings. We therefore created a linear regression model for each participant that best

matched the model’s three measures to each participant’s individual similarity ratings.

We also created linear models that translate the three measures, on their own, to each of

the participants’ similarity ratings, in order to look at their individual contributions. As

before, when looking at their combined contribution, we summed familiarity and priming

into a single activation value. When considering perceptual likeness, in addition to shape,

we considered the sum of the six color similitude values, as well as the three interactions

of the pairwise color values.

Using the qualitative ranking evaluation method from the original paper, our model

matches the ranking data from the experiment shown in Table 1. Most important, it

matches the relative rankings of the AB/BA, AB/{AA,BB}, and AB/{AC,CB} conditions,

which we discussed earlier as being particularly useful in capturing the nuances of judg-

ments in this experiment. Quantitatively, Fig. 9 shows the human participant data and the

model data on the same graph. A statistical fit of our model to the data produced an R2

of .960. When the full range of manipulations is considered, not just those with an AB or

BA manipulation, our model fit the data with an R2 of .941. Overall, then, our fit to the

data was excellent.
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Individually, each of the measures except for familiarity was a significant predictor of

the human data (all with p < .001). As we suspected, familiarity made no meaningful

contributions to the model’s explanations of the data because it was too dependent on

ordering effects to let its true predictions come through. Color accounted for some of the

trends of the data overall, but it was unable to explain the differences between conditions

where the same set of colors appears in different configurations (such as the differences

between the AB/AB and AB/BA conditions; see Fig. 10). Shape suffers from a similar

shortcoming.

Priming, on the other hand, does capture similarity at the object level. As Fig. 11

shows, priming highly differentiates the conditions by the presence of shared objects. In

particular, priming places a heavier emphasis on conditions with two identical objects

(such as for AB/AB and AB/{AA,BB}) than it does on conditions with simply identical

features (such as AB/BA); this distinction, a robust effect seen across a variety of experi-

ments in similarity, is not captured by the other measures.

4.2. Discussion

In this section, we introduced a model in which our account of similarity, using mea-

sures of familiarity, priming, and perceptual likeness, explains similarity ratings of differ-

ent pairs of complex visual stimuli, and we showed that it provides a strong account for

the experimental data presented by Larkey and Markman (2005). In the original study,

the data were used to differentiate between several transformational and structure map-

ping approaches to similarity. As Larkey and Markman (2005) explain, one way of differ-

entiating between competing structure-based approaches is in how they handle matches in
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Fig. 9. Average similarity rating by feature manipulation, when the other feature manipulation is AB or BA.
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place, or MIPs, where features in an object match in the same role (such as comparing

two black cars that have beige interiors), and matches out of place, or MOPs, where fea-

tures in an object match in different roles (such as comparing a black car that has a beige

interior with a beige car that has a black interior) (Goldstone, 1994b). While many agree

that both MIPs and MOPs are important for determining similarity, accounts differ about

their relative contribution to similarity, as well as the complexity of the analysis used to

uncover the relational structures among features, roles, and objects (Falkenhainer, Forbus,

& Gentner, 1989; Goldstone, 1994b; Larkey & Love, 2003). These data, with their corre-

spondences at both the feature- and object-level, provided a good setting in which to

compare these approaches.

Ultimately, in the original paper, a structure mapping approach, SIAM (Similarity as

Interactive Activation and Mapping) (Goldstone, 1994b), was identified as the best match

since its predicted rankings of similarity match those of the data the best. As we have sta-

ted, we believe that these rankings can be explained in a simpler way, without explicit

structure mapping.

Our approach does this by implicitly capturing the nuances of MIPs and MOPs in this

data without any formal structure analysis. As we described above, the perceptual like-

ness measures do a satisfactory job of distinguishing between conditions with MOPs and

those without. Priming, in turn, implicitly accounts for both MIPs and MOPs because

duplicate features and objects result in the second pair receiving higher spreading activa-

tion. And although it does not explicitly distinguish between these types of matches,
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Fig. 10. Average similarity rating by feature manipulation, when the other feature manipulation is AB or

BA, and where the only measure considered is color. As this graph shows, while color captures the trends

overall, it is unable to account for the differences between the AB and BA results, since they have very simi-

lar coloring.
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MIPs result in an extra boost of similarity since both the underlying features and the par-

ent object itself are duplicate. We argue, then, that our approach is stronger than that of

SIAM with respect to these data, because we are able to fit the data quantitatively in

addition to qualitatively, and to the full dataset instead of just to the AB and BA condi-

tions subset.

In contrast, the similarity approach of Polk et al. (2002), considered above, is too lim-

ited to explain these data. The neural network successfully learned asymmetry based on

differential exposure to stimuli, but it is unable to capture the effects here that arise out

of perceptual likeness and structural similarity. In fact, given that the stimuli are seen

with roughly equal frequency, it would predict, overall, that every stimulus is roughly

equally similar to every other.

Similarly, SIAM struggles to explain the main effects of the first study. The priming

relationships between the color blocks in SIAM would be symmetric, since they are based

purely on features and structure and there are no real features to align; thus, SIAM cannot

naturally capture the data’s primary asymmetry effect. SIAM is also not sensitive to how

often the stimuli are encountered, preventing it from capturing the data’s second signifi-

cant effect where ratings rise over time. SIAM’s more specific view of similarity, overall,

means that the approach would be unable to make meaningful explanations about the

similarity ratings from the first experiment, which we are able to capture using the same

approach as we do here.

We also compared our approach to a transformational distance approach that was used

to model a dataset that included the same stimuli (but different conditions) as Larkey and
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BA); it also illustrates its lesser favoring of MOPs.
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Markman (2005). Hodgetts, Hahn, and Chater (2009) argue that similarity is determined

by counting the number of steps (such as swapping objects of features) necessary to

transform one stimulus of the pair into the other. We applied their step counts to the

experiment here and analyzed its ability to explain the data. Qualitatively, one of the

approach’s main shortcomings is its inability to adequately capture the differential influ-

ence of MIPs and MOPs on similarity. This is because it equally weighs transformations

that swap features versus ones that swap entire objects; on the other hand, this allows the

model to operate with no free parameters. Quantitatively, on the subset of data analyzed

in the original study (where one manipulation was either AB or BA), the transformational

approach achieves an R2 = .86, which is less than our R2 = .96; on the entire dataset, it

achieves an R2 = .87, compared to our R2 = .94. Additionally, transformational

approaches have difficulty explaining the data in the first study, because of the lack of

features to transform.

Still, further study was warranted to support our argument that we can, in fact, account

for the role of MIPs and MOPs in similarity. We therefore next modeled one of SIAM’s

cornerstone experiments. By doing so, we can further confirm the hypothesis that we are

able to implicitly account for these low-level structural effects without any formal struc-

ture analysis.

5. Rating similarity of schematic stimuli

The third, and final, experiment we consider has stimuli that place a more explicit

emphasis on quantifying and qualifying the influence of MIPs and MOPs on similarity. In

it, participants were asked to rate the similarity of two schematic birds (Experiment 2 of

Goldstone, 1994b). Each bird consisted of four connected parts: a head, upper wing,

lower wing, and body. Birds differed from one another based on what symbols appeared

in each part; each of the 21 possible symbols consisted of straight lines arranged in geo-

metric patterns. In addition, all birds had identical schematic beaks and tails.

The first bird of the pair always had four unique symbols. The second bird’s symbols

were then constructed based on one of 15 manipulations of the first bird’s symbols. Simi-

lar to the manipulations from the preceding experiment, the manipulations are described

abstractly, using letters to represent the pairs’ symbols, with the first pair always repre-

sented as ABCD. Table 2 shows the manipulations.

Fig. 12 shows a sample bird and symbols for the condition BACD. When applying the

manipulations, the part of the bird that corresponded to each of the letters was randomly

selected, as were the symbols used. The physical left-right order of the birds was also

randomized. Each bird was 7.6 cm long, and they were separated by 5 cm.

Participants began with 15 practice trials, followed by 150 trials, with each manipula-

tion being presented 10 times each, in random order.1 In each trial, participants were

shown the two birds simultaneously and were asked to rate the birds’ similarity on a scale

of 1 (low) to 9 (high). After responding, the screen was cleared and the next pair of birds

was shown after a 2 s pause. There were 29 participants in the study.
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The results analyze the experiment in terms of the relative and combined contributions

of MIPs and MOPs. Both MIPs and MOPs were found to be significant factors in the

similarity ratings, with MIPs contributing more to similarity than MOPs. Additionally,

conditions with repeated symbols presented as a special case. Birds in such conditions

have an MOP with the same symbol as an MIP; we call such conditions “duplicate

MOP” conditions. As Goldstone (1994b) discusses, such duplicate MOPs seem to con-

tribute little, if any, to similarity ratings.

5.1. Model

We use here the same model as for Experiment 2, but with its stimulus representation

and task knowledge marginally adjusted to account for the slightly different stimuli. Our

measure of perceptual likeness was hampered because the exact symbols used in the

study were not available. Therefore, we defaulted to the simple approach of calculating

the likeness of two symbols as “0” if the symbols were different, or as “1” if they were

the same; the likeness value of two birds was then the sum of these values for each pair-

wise combination of symbols. The model uses the same parameters as the previous two

models.

5.1.1. Model explanations
Priming, familiarity, and perceptual likeness make the same explanations as in the pre-

vious experiment. It is worthwhile, however, to elaborate on several points in order to

clarify how they account for the main effects highlighted in this experiment. First, it is

appropriate here to frame the discussion in terms of MIPs and MOPs. As we explained

Table 2

The 15 manipulations used to generate the schematic bird stimuli

Method Initial Bird Changed Bird MIPs MOPs

1 ABCD ABCD 4 0

2 ABCD ABCC 3 1

3 ABCD ABCZ 3 0

4 ABCD ABDC 2 2

5 ABCD ABDZ 2 1

6 ABCD ABYZ 2 0

7 ABCD AADC 1 3

8 ABCD AXDC 1 2

9 ABCD AAYZ 1 1

10 ABCD AXYZ 1 0

11 ABCD BADC 0 4

12 ABCD BADZ 0 3

13 ABCD BAYZ 0 2

14 ABCD BXYZ 0 1

15 ABCD WXYZ 0 0

Note. Table adapted from (Goldstone, 1994b). MIPs, matches in place; MOPs, matches out of place.
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earlier, priming is sensitive to the total number of unique symbols and parts present in

the scene. Priming thus suggests that MIPs and MOPs increase similarity because each

reduces the numbers of unique symbols and parts in the scene. Priming also provides

insight into why MIPs affect similarity more than MOPs: MIPs reduce both the number

of unique symbols and parts, whereas MOPs reduce only the number of unique symbols.

We also previously discussed how the results show a special case for “duplicate MOP”

conditions, where a stimulus has an internally repeated item. In such cases, the model’s

representation of the bird will have one fewer incoming association, since it is connected

to three unique symbols instead of four. Although the duplicate association strength will

be stronger than the others, overall, the additional MOP contributes little priming to the

pair, predicting the dampened similarity for these conditions.

A third point of clarification is that, because of the large number of symbols, parts,

and birds possible in this dataset, we expect that familiarity will be less dependent on

ordering effects and will contribute more meaningfully to our model’s fit.

5.1.2. Model fit
The data from this experiment are no longer available; therefore, we used the program

“PlotDigitizer” (Plot Digitizer, 2015) to extract the values of the summary data points

shown in Fig. 7 of Goldstone (1994b). Since our model is sensitive to the order in which

stimuli are presented, we used our model to simulate data from 1,000 experimental runs

in order to allow effects to better converge on the model’s true predictions. Each experi-

mental run was generated randomly according to the specifications of the original study.

We averaged familiarity, priming, and perceptual likeness across these 1,000 runs for

each condition. We then created a linear regression model to match total activation and

perceptual likeness to the study’s data. Overall, the model’s fit to the data was excellent,

yielding an R2 of .988. Importantly, in addition to a strong quantitative fit, we also cap-

ture the qualitative effects of the original study. As Fig. 13 shows, our account for simi-

larity exhibits both a higher emphasis on MIPs than MOPs, as well as the dampening

effect of the duplicate MOP conditions.

Individually, each of the three measures was a significant predictor of the human data

(all with p < 0.001). Both familiarity and priming contribute to the higher weight for

MIPs than MOPs; priming, in addition, accounts for the duplicate MOP conditions. Per-

ceptual likeness also captures some of the data’s trends, but, as with Experiment 2,

Fig. 12. Sample birds showing the manipulation condition ABDC. (Figure adapted from Goldstone, 1994b.)
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weighs MIPs and MOPs equally and so cannot distinguish between conditions with the

same symbols, but in different places (such as the ABCD and ABDC conditions).

5.2. Discussion

Here, we described a model using our account for similarity that accounts for a third

similarity dataset, Experiment 2 from Goldstone (1994b). Perceptual likeness, while nec-

essarily simplistic for this study, still provides the broad strokes of similarity increasing

with shared symbols, whether MIPs or MOPs; familiarity and priming discriminate

between MIPs and MOPs by more heavily emphasizing MIPs; and priming provides a

strong explanation for why the similarity of duplicate MOP conditions is dampened. As

before, priming and familiarity capture these effects implicitly, without any sort of formal

structural analysis.

An important point in favor of our approach is that this model, as well as the model

for Experiment 2, exhibits these effects and explanations even when different aspects of

the model are perturbed. It still strongly fits the data if the task structure is different, such

as if it retrieves symbols and parts in a different order. The specific choice of representa-

tion also seems to matter little, as long as the basic association structure we have shown

here is created as part of the task strategy. Changes to other aspects like the structure of

source activation also preserve the model’s main effects. This lack of sensitivity to the

model’s specifics increases our confidence in our overall account.

In the original study, several approaches were considered as candidates for explaining

the data, and as with the second experiment we consider here, SIAM was identified as
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the best candidate. Here, our fit is comparable to SIAM (R2 = .988 as compared to

SIAM’s R2 = .977) while also maintaining the advantages over SIAM that we have previ-

ously discussed: namely, that we are able to model the first experiment we consider in

this article, which SIAM struggles with; and that our approach does not rely on a sepa-

rate, formal analysis of the stimuli, but occurs naturally as part of the process of viewing

and representing the stimuli to complete the task.

In addition, we argue that our approach has an advantage over SIAM because it

extends more naturally to larger and more complicated situations, such as those involved

with analogical reasoning. While SIAM has a fixed representation structure, our approach

allows for changes in representation: If one’s representation of the stimuli were to change

over time, familiarity, priming, and perception would adapt and morph along with it. We

discuss this point further in the following section.

6. General discussion

Here, we have proposed a novel account of similarity. The account is based on how

familiar stimuli are, how much they are primed, and how perceptually similar they are.

Models using our account for similarity seem to match well to how humans perform sim-

ilarity judgments of both simple, perceptual stimuli displaying asymmetry effects, as well

as more complicated stimuli that have structural correspondences.

Our approach furthers our understanding of similarity in three main ways. First, it per-

forms an analysis of the relative, and combined, contribution of familiarity, priming, and

perceptual likeness to similarity. Across the three studies we consider, we found priming

to be the most consistent and reliable discriminators of similarity, capturing both asym-

metry as well as structural effects. Perceptual likeness accounts for many of the more

general trends of similarity as well. Familiarity, on the other hand, while often important,

has a less consistent role in explaining the data from these studies since it is dependent

on stimuli’s statuses in memory and is heavily influenced by ordering effects.

Second, our approach provides an alternate account for how structural alignment

occurs. It posits that, for simple stimuli, structure-based similarity can arise naturally and

implicitly out of the combination of familiarity, priming, and perceptual likeness, as rep-

resentations of stimuli are naturally built up in memory. Third, our approach strongly

relates to others in literature and gives strong intuition for why many of these similarity

effects occur by providing them with a unified underlying explanation. We further discuss

these contributions, as well as other important points, next.

6.1. Similarity, perception, and learning

One aspect of our account that bears further investigation is the depth to which percep-

tion influences similarity. Perception has a fundamental role in how humans perceive

things as similar in the world, and our results here confirmed its importance in similarity

judgments. Some evidence suggests, however, that the strength and quality of its role
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seem to change over time. In the absence of strong conceptual knowledge, for example,

children often rely on perceptual and superficial features to describe why objects are simi-

lar; only after more abstract representations are developed do they respond with more

relational similarities (Gentner, 1988). Interestingly, our similarity account predicts a sim-

ilar shift. In the absence of other knowledge, a model would rely purely on perceptual

likeness; over time, the effect of perceptual likeness would be modulated somewhat as

the model becomes more familiar with concepts and their associations, and familiarity

and priming begin to play a larger role.

Similarly, others have argued that perceptual similarity is not a fixed variable, but

rather is constantly in flux (Smith & Heise, 1992); and as people gain more experience

with items in the world, the perceptual features they attend to shift. While the level of

perceptual similarity being referred to in such studies is deeper than what is captured by

our perceptual likeness measures, our similarity account is compatible with this view. If

the features being attended to while looking at an item were to change, our perceptual

likeness measures would reflect that change. Similarly, if one’s representation of an

item’s visual appearance changes over time, our account predicts that the item’s associa-

tions with related concepts will also change, leading to meaningful differences in famil-

iarity and priming.

6.2. Similarity, prototypicality, and weighted features

The idea that similarity stems from the notion of prototypicality and/or weighted fea-

ture matching is long-standing and well-supported (Rosch, 1975; Tversky, 1977), and it

has revealed many interesting effects of how humans perceive similarity. For example,

work in these areas has shown asymmetry to occur not only between simple perceptual

stimuli, but also between everything from complex shapes and geometric forms, to high-

level concepts such as countries, foods, and physical objects (Medin et al., 1993).

Our work on similarity operationalizes and connects the different conceptual and theo-

retical narrations of similarity that stem from this work. Using learned associations, we

are able to explain how and why prototypically affects similarity: Prototypical items are

highly familiar and have asymmetric associations, both leading to higher similarity. We

also explain how and why shared features between objects differentially contribute to sim-

ilarity: They lead to priming between the objects, and the amount of that priming depends

on how correlated they have been found to be with each other in the past. Our work, in a

sense, unifies these two separate viewpoints by explaining them with the same set of

underlying mechanisms.

Our work not only grounds and supports these different theories on similarity in expli-

cit cognitive mechanisms, but also helps them to explain cases that they did not naturally

extend to before. The experiment of pairs of color patches, for example, cannot be

explained by these earlier theories because there is no clear prototype (no shade of the

blues or greens is inherently more prototypical than another), nor are there multiple fea-

tures to differentially weigh (color is the only feature). In fact, theories of prototypically

and weighted feature matching would have difficulty generating any meaningful similarity
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values for these stimuli. Using our approach, however, we are able to explain the results

of this experiment by effectively learning which colors are prototypical during the course

of the experiment.

Our work also accomplishes this in a way that is compatible with some of the com-

pelling arguments against prototypicality and weighted feature matching. Nosofsky

(1991), for example, argued against that these asymmetries can rise out of biases associ-

ated with specific stimuli, as opposed to the relationship between two stimuli. This bias

term strongly correlates with familiarity, which is entirely depending on a single stimulus.

It also has ties to priming, since the relationship between two objects depends, in part, in

their use outside of that relationship. Familiarity and priming perhaps even more strongly

relate to the density portion of the distance-density model (Krumhansl, 1978), which also

depends on properties of individual stimuli and their relationship with others outside of

the specific judgment being made.

6.3. Asymmetries in similarity

It is also worthwhile to discuss asymmetries in similarity outside of the context of

exposure frequency and prototypicality. For example, Hahn, Close, and Graf (2009) found

asymmetries in a study involving morphing images into one another. When shown two

images from the morph in a forward order, participants rated the images’ similarity

higher than they did when rating the similarity of two images shown in a backwards

order. Our approach is compatible with this finding. Because priming is directional, it is

affected by the order in which stimuli are perceived. Specifically, assuming some method

of discretization of the video, earlier images in the morph will prime later images in the

morph more than the opposite, causing the observed asymmetry.

Although not studied by the experiment we model, the stimuli set from Larkey and

Markman (2005) can also give way to asymmetries (Hodgetts & Hahn, 2012). This study

found asymmetries in response time in a subset of the manipulations of the experiment,

depending on which stimulus is being compared to. Our approach is compatible with both

the presence of asymmetry in these results, and with its manifestation as response time.

As an intuitive example for how we explain the asymmetry, we refer again to the dupli-

cate MOP condition (such as an AB stimulus being modified to AA) that we have dis-

cussed earlier. In this condition, AB will spread more activation to AA than AA to AB,

since A’s link to AA is stronger than its link to AB. This reasoning generalizes across

the different conditions as well.

Our account also predicts that such asymmetries can also manifest as asymmetries in

response times. Familiarity and priming together form an activation value that, according

to our overarching theory of cognition, determines how easy it is to access a memory.

This implies that stimuli with higher familiarity and priming will be more easily accessed

in memory, allowing the model to respond more quickly to a query or judgment. Addi-

tionally, for more complicated, structural stimuli, the representations of the stimuli can be

built up more quickly when there are overlapping features or objects, allowing for a faster

response.
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6.4. Representation and structure in similarity

One downside of the traditional prototypicality- and feature-based approaches to simi-

larity is that, in addition to being unable to capture similarity between very simple per-

ceptual stimuli, they also cannot easily account for the higher-order relationships, or

structure, between different concepts; many argue that these relationships are critical for

determining similarity (Medin et al., 1993). As we have discussed, structure mapping

approaches attempt to mitigate this shortfall by explicitly considering correspondences

and structure as part of their process.

Our approach, in contrast, is able to capture many of the nuances of MIPs and MOPs with-

out any formal structure analysis. In the second and third experiments we model here, famil-

iarity and priming capture implicit structural similarities stemming from shared components

between the stimuli. This helps to unify different prototype and weighted feature-based

approaches with structure-based approaches by suggesting that the constructs the approaches

rely on—such as prototypicality and hierarchical feature relationships—are related.

Priming, however, is only as successful as the items’ representations allow, since both

rely on overlaps in item representations. While here we join many structure-mapping

approaches in assuming simple and appropriate item representations, our work is also

compatible with the notion that similar items being compared may be represented differ-

ently (e.g., they may be non-aligned). In cases such as this, we believe that some sort of

higher level, deliberative processes are necessary to make meaningful similarity judg-

ments (Forbus, Gentner, & Law, 1995; Gentner & Markman, 2005). While we do not

model this type of alignment or analogical reasoning here, our approach fits well with

these approaches and, once such reasoning has occurred, would naturally take advantage

of newly created (and aligned) representations to determine similarity.

An additional, related point, is that we are of the opinion that these differing representa-

tions are likely to become more and more common as the items being compared become

more and more complex. Therefore, while our account of similarity is able to capture the

data shown here, at some point we believe that the stimuli similarity will become too com-

plex for our approach to capture without the higher level, deliberative processes mentioned

above. While we are not sure where the line lies between stimuli that require extra reasoning

and those that do not, it is something that we look forward to exploring in the future.

6.5. Cognitive framework for similarity

While our more general conclusions about the role of familiarity, priming, and percep-

tual likeness hold largely independently of the details of their implementations, we also

believe that our specific approach to these measures provides distinct benefits to our

work. Our use of the ACT-R architecture for familiarity and priming connects our

approach with a broader theory of human cognition that has used the mechanisms

described here to explain a diverse array of cognitive phenomena, such as memory, diag-

nostic reasoning, case-based reasoning, and errors during task execution (Altmann &

Trafton, 2002; Anderson, 1983; Anderson et al., 1998; Breslow, Trafton, et al., 2009;
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Harrison & Trafton, 2010; Hiatt & Trafton, 2015a,b; Lenz & Burkhard, 1996; Mehlhorn,

Taatgen, Lebiere, & Krems, 2011). Our work also calculates the familiarity and priming

measures in a process-oriented way, in which they are learned and change over time as

the model performs the experiments. When viewed in this light, our work suggests that

the mechanisms that determine similarity are also used when, for example, priming a

memory for retrieval, determining what step to take next in a sequential task, or deter-

mining the similarity of sets of medical symptoms to diagnose a disease.

As we have stated before, our goal is to understand the strength of the roles of famil-

iarity, priming, and perceptual likeness in similarity. Therefore, when comparing these

measures’ values against empirical Likert similarity ratings, we used a theoretically light

method of converting these measures’ values to similarity ratings. In the cognitive frame-

work that we use in our approach, there are deeper models of such ratings (e.g., Petrov &

Anderson, 2005). However, they make auxiliary assumptions that could have clouded our

understanding of our results and so we do not utilize them here.

7. Conclusions

In this article, we have presented a novel way of accounting for similarity. Our

approach posits that similarity stems from three main sources—familiarity, priming, and

inherent perceptual likeness. Using these three measures, our account of similarity

explains ratings of both simple, color-based perceptual stimuli that display asymmetry

effects, as well as more complicated perceptual stimuli with structural properties; more

traditional approaches to similarity solve only one or the other, but have difficulty

explaining both. Overall, our work highlights the importance of these components of sim-

ilarity, both individually and together.
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