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Abstract

Postcompletion error (PCE) is a type of systematic procedural 
error that people are prone to commit when there is one step 
to  perform after they have accomplished their main task goal. 
A computational cognitive model developed previously  for 
PCE in an interruption paradigm extends to a working 
memory load and capacity paradigm. The model  explains 
PCE in terms of long-term declarative memory mechanisms, 
opposing base-level activation with spreading activation.
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Introduction
If you have ever left an original document on a photocopier 
after walking away with the copies then you have 
committed a postcompletion error (PCE).  PCE is one 
example of a systematic procedural error, an error people 
tend to commit in familiar tasks that follow a specific 
sequence of actions each time the task is performed. 
Systematic procedural errors seem to be products of a 
combination of stable human cognitive structures and 
processes as well as certain task environments. PCE tends to 
have a higher incidence rate than chance slips and is very 
resistant to training (Byrne & Davis, 2006). Our goal is to 
understand the cognitive structures and processes 
underlying PCE and, ultimately, why people make 
procedural errors of all kinds.

Studying human error is important because with 
increasing capability and complexity of our technological 
systems (e.g., transportation, power generation) the amount 
of damage that can result from error is magnified. While 
chance slips occur because humans have stochastic 
components, systematic error occurs when certain features 
of human cognition meet certain task environmental 
conditions. If we learn about those cognitive and 
environmental features then we can learn to avoid them in 
our technological systems such as by exclusion from 
designs (Chung & Byrne, 2008) or prediction and 
prevention (Ratwani & Trafton, 2011).

PCEs are pervasive and can occur during routine 
performance of a task.  Furthermore, PCE rates consistently 
increase when cognition is stressed in some way. For 
example, if people are interrupted just before the PCE step 
(Ratwani & Trafton, 2010) or if working memory load is 
high (Byrne & Bovair, 1997).

We are developing a unified theory of PCE. A unified 
framework is important because one cognitive system, i.e. 

the human mind, produces PCE in all circumstances. 
Getting the explanation correct for one stressor type then 
acts as a constraint on explaining the next type.

Byrne and Bovair (1997) constructed one model of PCE 
that explained it in terms of working memory. Their model 
assumed a hierarchical goal representational structure 
derived from a GOMS (Card, Moran, & Newell, 1983) 
analysis of an experiment task also reported in their study. 
Their CAPS model (Just & Carpenter,  1992) propagated 
activation necessary for retrieval of step representations 
downward from the task supergoal to subgoals to individual 
steps. Subgoals had to have their activations maintained 
above a certain threshold in order for them to remain 
accessible.  Crucially, the main goal of the procedure would 
be satisfied before it was time to perform the 
postcompletion step. The presence of other information to 
maintain in an active state, in this case a three-back memory 
task, taxed the system to capacity such that it failed to 
maintain the postcompletion subgoal above threshold. 
However, it is not clear how their model would explain PCE 
beyond the working memory capacity paradigm.

Another account of systematic error, Memory for 
Goals(Altmann & Trafton, 2002), posits that we encode 
episodic traces of our goals as we complete tasks. Each goal 
is encapsulated in an episodic memory, which sparsely 
represents behavioral contexts at the time of their encoding. 
The strength of these memories decay as an exponential 
function of time. Memory for Goals provides a process-level 
theory for why certain types of errors are made during a 
well-learned task as a consequence of retrospective, 
episodic memory (Altmann & Trafton, 2007; Ratwani & 
Trafton, 2010, 2011; Trafton, Altmann, & Ratwani, 2009). 

The decay process has a cost, which is that suspended 
goals are forgotten gradually, making them harder to 
resume. If goals are prospectively set at the outset of task 
execution, they may decay from working memory before  it 
is time to execute them. With respect to PCE, this implies 
that the default tendency is to make such errors, not avoid 
them.

The model described in this report represents our attempt 
to construct a unifying explanation for PCE in multiple 
paradigms. To that end this model draws upon both previous 
works, predicting PCE to occur as a combination of goal 
decay and a limited-capacity to spread activation from 
working memory to long term memory. The current study 
extends another model of PCE originally developed for an 
interruption paradigm (Tamborello & Trafton, 2013) and 
extends to Byrne and Bovair’s working memory loading 
paradigm.



Experiment
We applied our model to Byrne and Bovair’s (1997) 
postcompletion phaser task from their second experiment. 
For our purposes the important points about that task were:
1. Working memory load varied on a within-subjects basis, 

implemented by a three-item memory task.
2. Participants varied in their own working memory 

capacities. Byrne and Bovair treated this as a two-level 
factor, split on the median.

3. Participants had to follow a specific procedure.
4. The spatial layout of the task grouped steps by proximity. 

This encouraged use of an intuitive heuristic (“do all the 
items in the cluster”), as well as having an isolated 
“clean-up” step at the end. Byrne and Bovair’s own 
GOMS analysis of their phaser task resulted in a 
hierarchical task representation that they used in their 
CAPS model (Figure 1).

5. A PCE was defined as failing to click the last step’s 
button and instead making an action that was in service 
of the next trial on the phaser task (e.g. attempting to start 
a new trial by clicking Power Connected). The PCE rate 
was the number of PCEs divided by the number of 
opportunities to make a PCE.

Model
This ACT-R 6 (Anderson, 2007a; Anderson et al., 2004b) 
model, developed originally for another paradigm, is 
described here. The model used cyclic, activation-based 
retrieval from long-term memory of the task step 
representations encoded as procedure-step chunks. At each 
step there were two sources of retrieval activation: 1) 
spreading activation from the contents of the goal and 
imaginal representations, and 2) each chunk’s base-level 
activation. Sometimes these activation sources conflicted 
with each other, particularly for the postcompletion step. At 
such times the model was likely to commit an error.

The amount of spreading activation from the goal and 
imaginal buffers to the chunk encoding the postcompletion 
step increased with advancing task context because of the 
inverse association strength function (Equation 1), which in 
turn is based on step co-occurrence. Association strengths 
were static for the duration of each run. Here, j is the serial 
position within the phaser task of the step encoded by a 
chunk representing the model’s context (i.e., the last step 
performed), i is the serial position within the phaser task of 
the step encoded by an associated chunk in declarative 
memory, and m is a global ACT-R parameter to set the 
maximum association strength, set to 3.5 for this model.

However, Destroy Romulan Ship, the main goal of the 
task, was retrieved at the end of every subgoal of the task. 
With each retrieval its base-level activation increased. The 
postcompletion step, being its own subgoal, immediately 
follows another subgoal so that when it is time to retrieve 
the postcompletion step’s representation, Destroy Romulan 
Ship has just received more base-level activation. Because 
ase-level activations decay gradually over time for all 
chunks and because Destroy Romulan Ship had been 
retrieved much more recently than the postcompletion step, 
the former’s base-level activation was much greater, leading 
to its total activation being approximately equal to the 
latter’s. 

The model implemented working memory loading by 
filling three slots of the imaginal buffer chunk with chunks 
each representing a letter of the alphabet—an abstracted 
three-back memory task. The presence of those chunks 
reduced the amount of activation spread to the procedure 
step chunk from all of the activation available to the 
imaginal buffer to just one-fourth of it.

The model implemented individual differences in working 
memory capacities by taking different values of two of 
ACT-R’s global parameters: activation noise (.4 for low-
capacity and .225 for high-capacity) and imaginal activation 
(.8 and 2.25, respectively), similar to Byrne and Bovair’s 
(1997) manipulation of CAPS’ activation ceiling parameter.

Principles of the PCE Model
Basic Behavioral Cycle The model operated cyclically  by 
retrieving from long-term memory details specifying each 
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Figure 1: Goal structure of Byrne and Bovair’s (1997) 
phaser task. Closed rectangles represent the task goal and 
subgoals while unenclosed text represents individual steps. 
The open-ended rectangle represents a decision to be made 
based on the task environment’s status. Adapted from “A 
working memory model of a common procedural error,” by 
M. D. Byrne and S. Bovair, 1997, Cognitive Science, 21:1, 
p. 43. Copyright 1997 by the Cognitive Science Society.
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procedure step. The model carried out the individual 
operations necessary to accomplish that step of the task as 
specified by the representation it had just retrieved. Then it 
used association from that step to retrieve the next.

Individual mental operations of the model—productions, 
in ACT-R parlance—were few and were sparse in their 
representations so that they could be generic. For example, 
looking for a button and then clicking it was abstracted from 
the details of the individual button. The details of each 
button were specified by the declarative representation 
retrieved at one point in the cycle.
Spreading Activation and Strength of Association An 
architectural feature of ACT-R is that it uses a limited pool 
of spreading activation from sources—a chunk in a 
module’s buffer—to associated chunks in declarative 
memory as one of its mechanisms of declarative retrieval. 
Our model used ACT-R’s goal and imaginal buffers as 
sources of activation, each providing one unit. 

Activation spreads from source chunks in ACT-R’s 
buffers to chunks residing in ACT-R’s declarative memory 
as a function of the strength of association between the 
value of each slot in source chunk j to chunk i in declarative 
memory (Anderson, 2007a; Anderson et al., 2004b). This 
gives ACT-R a way to adjust its behavior according to 
context as the strength of association indicates the 
probability that chunk i will be needed in context j.  The 
limited pool of activation is divided equally among all the 
slots of source chunk j. This means that ACT-R implements 
a limited-capacity working memory.

Our model set strengths of association from each step’s 
representation to the next at the beginning of each run 
according to Equation 1.  

For example, if the model had just performed the first 
step, Power Connected, the association strength to the 
chunk encoding the second step, Charge, would be 3.5. The 
strength of association to the third step, Stop Charging, 
would be 1.75. This enabled associative chaining from the 
model’s current context to the next procedure step. This 
produced a graded representation that decreased in strength 
with increasing psychological distance,  a feature borrowed 
from Altmann and Trafton (2007).
Base-Level Activation  Base-level activation is an estimate 
that a declarative chunk will be needed in the future, given 
how recently it has been needed and how often it has been 
needed. This is another architectural feature of ACT-R and 
the rationale is that given a limited capacity to retain 
information, those chunks not retrieved for a long time are 
allowed to have their activation decay below a threshold 
beyond which their retrieval will become less likely. 
Conversely, chunks that are retrieved frequently will have a 
high base-level activation contribution to their total 
activation. The model used ACT-R’s default decay rate of 
0.5 and activation noise of 0.2.

Built into the model is the assumption that spatial 
grouping of steps leads to Millerian (Miller, 1956) chunking 
of steps into groups, or subgoals. Anderson et al. (Anderson, 
Bothell, Lebiere, & Matessa, 1998), in their model of 
sequence memory, determined it crucial that sequence items 
be recalled in groups. Their model traversed a hierarchy of 

list item chunks, grouping chunks,  and a chunk encoding the 
current list. 

The phaser task model abstracted this process by adding a 
retrieval reference to the Destroy Romulan Ship chunk upon 
completion of each phaser task subgoal: Charge phaser 
bank, Set focus, Turn on tracking, Track and fire and Turn 
off tracking (see Figure 1). Each retrieval reference boosted 
Destroy Romulan Ship’s base-level activation. This is meant 
to abstract an Anderson et al. (1998)-like hierarchical goal 
traversal process: After completing one subgoal, the task 
main goal is retrieved and used to retrieve the next subgoal. 
Therefore Destroy Romulan Ship’s base-level activation 
tended to be relatively high.

The postcompletion step occurred immediately after a 
retrieval reference to Destroy Romulan Ship (after 
completion of the preceding subgoal). Furthermore, enough 
time would have elapsed since the postcompletion step’s last 
retrieval for the postcompletion step chunk’s base-level 
activation to decay substantially. Meanwhile, Destroy 
Romulan Ship had received four retrieval references, one at 
the end of each subgoal. Since each retrieval reference 
contributes to a chunk’s base-level activation, Destroy 
Romulan Ship tended to have a much higher base-level 
activation than any individual step’s representation, 
including the PC step.

Because of its high base-level activation, Destroy 
Romulan Ship usually had the second-highest total 
activation. If working memory was loaded or of low 
capacity, transient retrieval noise would sometimes give 
Destroy Romulan Ship higher total activation than the 
postcompletion step’s representation. This combination of 
the postcompletion step’s decay and Destroy Romulan 
Ship’s repeated retrieval was crucial for the model’s 
commission of PCE at resumption. Because of these base-
level activation mechanics the postcompletion step would 
then need a large quantity of spreading activation to have 
enough total activation to overcome Destroy Romulan Ship’s 
base-level activation so that the postcompletion 
representation could be retrieved reliably at postcompletion 
step time. 
Suspended and Resumed Goals 
We assume the model suspended its goals for nine seconds 
as subjects performed the track and fire step. This is because 
it required an intensive period of perceptual-motor tracking, 
followed by a move of attention, reading a phrase of text, 
and then deciding whether to continue or to restart. This 
process is significant because the model does not 
immediately regain all of its task context representation 
upon resumption. 

The model incorporated Altmann and Trafton’s (Altmann 
& Trafton, 2002) Memory for Goals (MfG) mechanism for 
encoding a retrievable episodic trace of every action it 
performed. As part of its execution cycle,  the model created 
an episodic chunk which contained a unique identifier as 
well as a reference to the model’s current imaginal buffer 
chunk. The imaginal buffer chunk contained references to 
each of the procedure-step chunks encoding steps performed 
in the current subgoal.  It, together with the goal buffer 
chunk, comprised the model’s context representation. The 
episodic chunk acted as a trace of partial context,  containing 



a record of the model’s progression through the task in the 
form of a sequence of the imaginal buffer chunk. 

However, the episodic trace only recorded the model’s 
problem state representation, the imaginal buffer chunk. It 
did not record the model’s control state representation, its 
goal chunk. Because the goal buffer chunk was not saved by 
the episodic trace it was therefore unavailable at resumption, 
and so the model had only the imaginal buffer chunk to act 
as activation source when it retrieved the next step to 
perform. Furthermore, when the model was in the working 
memory load condition, three-fourths of the imaginal 
buffer’s activation spread to the three working memory task 
chunks, rather than to the PC step’s representation in 
declarative memory. This meant that Destroy Romulan 
Ship’s base-level activation would often overcome the total 
activation of the postcompletion representation because of 
its relatively reduced spreading activation.
Structure of  Task Representation  The model relied on one 
critical assumption about the structure of procedure 
representation: Steps are organized into groups of one to 
four and the procedure’s main goal (e.g., to perform a trial 
of the phaser task) is retrieved after the completion of each 
subgoal. This assumption is adapted from the Anderson et 
al. (1998) model of sequence memory, although it is 
congruent with Byrne and Bovair’s model. This assumption 
was important for shaping the structure of the model’s 
working memory representations and influencing the 
declarative retrieval process. 
Competition of  Spreading Activation and Base-Level 
Activation at the Postcompletion Step Action selection 
was a product of declarative retrieval,  in turn a product of 
two key theoretical constructs in ACT-R’s declarative 
memory system: 1) spreading activation from the model’s 
current contextual representation, and 2) base-level 
activation of the step memories. Critically, under certain 
conditions these two constructs worked in opposition and 
balanced each other so that at the postcompletion step the 
model was just as likely to retrieve the postcompletion 
step’s representation as Destroy Romulan Ship.

Base-level activation, however, favored chunks that had 
been retrieved recently and often. The main goal also 
competed for retrieval with the procedure-step chunks on 
the basis of total activation. When the model retrieved 
Destroy Romulan Ship it started a new trial or subgoal. 
Destroy Romulan Ship was retrieved often and so tended to 
have a very high base-level activation. When the model was 
at the end of a subgoal it had just retrieved Destroy Romulan 
Ship, and so total activation—the sum of both retrieval 
mechanisms—tended to be very close for the chunk 
encoding the correct next step and for Destroy Romulan 
Ship.

An Example Model Run
The model started its run by retrieving a procedure step 
representation. Because its context at the time would 
indicate that it was starting the task and the first step is most 
associated with starting, the first step would usually be the 
procedure step representation retrieved. After that the model 
simply iterated through its basic behavioral cycle until it 
either until it got to the shoot step.

During the shoot step,  the model cleared its 
representations of its task context from its working memory 
constructs—the goal and imaginal buffers—and replaced 
them with ones representing manipulation of the target and 
shooting. At the end of nine seconds the model initiated its 
resumption subroutine.

When the model resumed its main task goal it began so by 
retrieving an episodic chunk. Because which episodic chunk 
retrieved was a function of base-level activation and 
transient noise, the most recent episodic chunk was usually 
the one retrieved. 

The episodic chunk held a reference to an imaginal buffer 
chunk, which the model then copied to the imaginal buffer. 
That imaginal buffer chunk held a record of the subgoal’s 
steps completed at the time the episodic chunk was created. 
Restoration of the imaginal buffer chunk provided the link 
necessary to retrieve the next step’s representation at 
resumption. However,  this was a relatively weak link 
compared to other times when the model also had its goal 
buffer chunk as an available source of spreading activation.

The model predicted higher rate of PCE for loaded trials 
than non-loaded, and for low working memory capacity than 
high working memory capacity because these two factors 
both impacted the amount of retrieval activation available to 
spread from the imaginal buffer chunk. Furthermore, 
although the goal buffer chunk also held a reference to the 
just-completed step, the episodic chunk only encoded the 
imaginal buffer chunk. And because only one other goal slot 
was occupied,  the association from the ninth step to the 
postcompletion step would get half of goal’s available 
spreading activation. Thus with the goal buffer chunk 
present the postcompletion step would get much more 
spreading activation as when the goal buffer chunk was 
absent (Figure 2b). This was enough to make the difference 
between reliable postcompletion step execution and equal 
chance of PCE when combined with base-level activation.



Furthermore, because Destroy Romulan Ship got retrieval 
references four times during each trial—including once 
immediately before the postcompletion step—it tended to 
have a much higher base-level activation than did the 
postcompletion step (Figure 2c). So when the model’s only 
source of context representation was the imaginal buffer 
chunk and the task context was time to perform the 
postcompletion step, the postcompletion step and Destroy 
Romulan Ship would have similar amounts of total 
activation. Transient noise added at retrieval time (a 
standard feature of ACT-R) could tip the balance one way or 
the other.

Model Fit
We used our model to simulate data from 1,000 subjects. 
This large number of model runs allowed effects to 
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Figure 2: Base-level and spreading activations of the 
model’s postcompletion step chunk as a function of context 
in no load (a) and load (b) conditions. X-axes indicate the 
step to be performed, by step ordinal number and by 
designating the postcompletion step as “PC.” The chunk 
encoding the main goal of the task is associated to 
subsequently performing the first step. It receives retrieval 
references at the end of each subgoal, indicated by arrows 
(c). Note how in the load condition (b) at the time to 
perform the PC step, the PC step’s representation has 
approximately the same total activation as does the main 
task goal (c); this is what causes PCE.

converge on the model’s true predictions. The model’s 
means closely matched those of the participants, r = .920, 
RMSD = .0657. Figure 3 plots the model’s means against 
the participants’ means and 95% confidence intervals.

Discussion
We developed a multi-paradigm PCE model. The model 
depends upon sparse procedural memory representation 
with details filled in from declarative memory. This 
structure is important because declarative memory 
mechanisms form the core of the model’s explanation of 
PCE. Our key mechanism for generating PCE is base-level 
activation’s opposition with spreading activation at the PC 
step.

The main task goal is retrieved repeatedly during task 
performance as the model traverses the task goal hierarchy. 
Each retrieval increases its base-level activation slightly. 
Meanwhile, because each step’s representation is retrieved 
only once during task performance, the correct retrieval of 
each step is relatively more dependent upon spreading 
activation. 

However, with a memory loading task’s chunks 
referenced in the imaginal buffer chunk at the 
postcompletion step, spreading activation in the load 
condition was divided over the four slots filled in the 
imaginal buffer chunk, compared to only one slot filled in 
the no load condition. So the difference in spreading 
activation becomes one fourth available to retrieve the PC 
step versus all of the imaginal buffer’s spreading activation, 
respectively. 

The division of current problem state representation and 
current control state information is well-supported by other 
modeling and also neuroimaging work (Anderson, 2007b; 
Anderson et al., 2004a). The present model implemented 
this structure in the imaginal and goal buffers, respectively. 
It played an important role in reducing the amount of 
spreading activation available to retrieval of the PC step 
chunk. 
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Figure 3: Mean postcompletion error rates, human data from 
Byrne and Bovair’s Experiment 2 phaser task (bars) and 
model (circles), as a function of memory load and capacity. 
Error bars display the 95% confidence interval of the mean. 
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When the main task goal is resumed after the track and 
fire step,  only the problem state information is retrieved 
from episodic memory. The control state information is 
constructed anew as the model goes along. But because this 
new control state representation lacks a reference to the last 
step representation retrieved, the control state cannot 
contribute spreading activation to the retrieval of the next 
procedure step as it does normally when it does not follow 
goal resumption. Now that spreading activation is only 
available from the imaginal buffer chunk, the total 
activation for the PC step chunk is reduced to being close 
enough to the total activation of the task main goal for 
transient noise to occasionally make the task main goal 
more active. This in turn leads to the model starting a new 
trial of the task, therefore committing a PCE.

There is one important caveat to the model. Rather than 
learning the task,  the model relied on assumptions about 
task representation structure. However, this assumption 
stems from GOMS analysis, which is a well-supported 
technique. Furthermore, the success of the current model 
lends additional credence to this style of hierarchical, 
symbolic goal representation.

We take these results as converging evidence in favor of 
our account of PCE. Now the model is nearly constrained by 
two datasets from differing paradigms. If the revised model 
presented in this report can provide as good a fit to the 
previous report’s (Tamborello & Trafton,  2013) data then we 
should be in good position to begin to address other types of 
systematic procedural error, such as anticipation, 
perseveration, and capture error.

We (, 2013) were correct in our speculation that our 
model could capture working memory effects in PCE rates. 
And this is because the model explains PCE partially as a 
result of working memory constraints, as in Byrne and 
Bovair (1997). This also represents to some extent 
validation of our strategy to pursuing a unifying cognitive 
theory of systematic procedural error. This is a good 
development because the same cognitive systems—namely, 
the human mind—are involved in all error types. Eventually 
it may lead to a cumulative science that proves useful for 
models of error detection and recovery.
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