
Objective: A computational process model could 
explain how the dynamic interaction of human cogni-
tive mechanisms produces each of multiple error types.

Background: With increasing capability and com-
plexity of technological systems, the potential severity of 
consequences of human error is magnified. Interruption 
greatly increases people’s error rates, as does the pres-
ence of other information to maintain in an active state.

Method: The model executed as a software-instan-
tiated Monte Carlo simulation. It drew on theoretical 
constructs such as associative spreading activation for 
prospective memory, explicit rehearsal strategies as 
a deliberate cognitive operation to aid retrospective 
memory, and decay.

Results: The model replicated the 30% effect of inter-
ruptions on postcompletion error in Ratwani and Traf-
ton’s Stock Trader task, the 45% interaction effect on 
postcompletion error of working memory capacity and 
working memory load from Byrne and Bovair’s Phaser 
Task, as well as the 5% perseveration and 3% omission 
effects of interruption from the UNRAVEL Task.

Conclusion: Error classes including perseveration, 
omission, and postcompletion error fall naturally out 
of the theory.

Application: The model explains post-interruption 
error in terms of task state representation and priming 
for recall of subsequent steps. Its performance suggests 
that task environments providing more cues to current 
task state will mitigate error caused by interruption. 
For example, interfaces could provide labeled progress 
indicators or facilities for operators to quickly write 
notes about their task states when interrupted.

Keywords: computational modeling, human error 
analysis, cognitive modeling, human performance mod-
eling, human systems integration

IntroductIon
Error is common in everyday working life. 

Studying human error is important not only for 
what it reveals about the normal operation of 
cognitive mechanisms but also because with 
increasing capability of our technological sys-
tems (e.g., transportation, power generation), 
the amount of damage that can result from error 
is magnified. With increasing complexity of 
those systems, error, once committed, is often 
more difficult to diagnose and correct (Reason, 
1990). Studying human error is difficult because 
of the variability of error behavior. Furthermore, 
error often arises from the dynamic interactions 
of several cognitive processes that normally 
perform very reliably.

The goal of this project is to understand the 
cognitive mechanisms that underlie our ability 
to perform sequential procedures and that also 
lead to certain error classes. To that end, we 
developed a computational model to account for 
multiple types of error using mechanisms pre-
sumed to operate during normal (non-error) cog-
nition. We will present the model together with 
results of tests we conducted comparing model 
predictions to human data collected in several 
laboratory studies, one of which was performed 
specifically as part of this research and others of 
which were collected and published previously.

theories of Action Selection and Error
A theory explaining error must also explain 

the correct action execution behavior that is 
much more common in the milieu of human 
task performance. Furthermore, as error by 
definition occurs in contexts in which people are 
trying to perform some other intended action, 
a theory of error behavior should explain error 
as something that arises out of the operation of 
the same mechanisms that enable correct action 
execution. What follows is a brief review of 
relevant theories.
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Working memory capacity. Byrne and Bovair 
(1997) studied a particular error type termed 
postcompletion error (PCE), which is the act of 
neglecting to perform some “clean-up” step 
after having accomplished the main goal of a 
task. They explained PCE as a function of a theo-
retical working memory construct. Here, working 
memory holds an active mental representation of 
the task and its current state. This representation is 
important for mental operations, such as recall of 
what action to perform next. Working memory has 
a limited capacity to hold these representations, 
and this capacity varies between people.

Byrne and Bovair studied working memory 
load as well as individuals’ differences of working 
memory capacities. Their Collaborative Activa-
tion-based Production System (CAPS) model 
(Just & Carpenter, 1992) assumed a hierarchical 
goal representational structure. It propagated acti-
vation necessary for retrieval of step representa-
tions from the task supergoal, held in working 
memory, to retrieve subgoals. Subgoals must 
maintain their activations above a certain thresh-
old for them to remain accessible. Crucially, the 
main goal of the procedure would be satisfied 
before it was time to perform the postcompletion 
step. The presence of other information to main-
tain in an active state, in this case a three-back 
memory task, taxed the system to capacity such 
that it failed to maintain the postcompletion sub-
goal.

Memory for goals. Another account of sys-
tematic error, Memory for Goals (Altmann & 
Trafton, 2002), posits that we encode episodic 
traces of our goals as we complete tasks. Each 
goal is encapsulated in an episodic memory, 
which sparsely represents a behavioral context 
at the time of its encoding. The strength of these 
memories decays over time such that it may be 
difficult to remember a past task context. Mem-
ory for Goals provides a process-level theory for 
why certain types of errors are made during a 
well-learned task as a consequence of retrospec-
tive, episodic memory (Altmann & Trafton, 
2007; Ratwani & Trafton, 2010; Trafton, Alt-
mann, & Ratwani, 2009).

The Remember-Advance Model. Altmann and 
Trafton (2015) developed a formal model of Alt-
man, Trafton, and Hambrick’s (2014) UNRAVEL 
sequence task, describing it as a two-phase retrieval 

process. The model carried over no task context 
from step to step in any sort of buffers or working 
memory. Instead, at the beginning of each step it 
retrieved an episodic encoding of the last action it 
performed. It then used that memory as the cue for 
an associative retrieval from long-term memory of 
the action to perform for the current step of the 
task. Perseverations, inappropriate repetition of an 
action, occurred due to interference in the retrieval 
of the episodic codes during the first retrieval 
phase. Omissions, skipping a step, were a conse-
quence of associative interference during the 
action selection process.

Interruptions
Being interrupted increases people’s error rates 

by 5% to 50% (Monk, Trafton, & Boehm-Davis, 
2008; Trafton et al., 2011). After an interruption, 
people will frequently perseverate, or they may 
omit a step. Sometimes these errors are irritating 
(e.g., ruining a meal by leaving out a crucial ingre-
dient), but sometimes they can have disastrous 
consequences (e.g., administering medicine twice 
or not configuring airplane flaps for takeoff). For 
these reasons, we find the interruption paradigm 
to be both useful for eliciting error behavior from 
subjects in empirical studies as well as an impor-
tant topic of study in its own right.

rEmEmbEr-AdvAncE ProcESS modEl
We developed our computational process 

model using the ACT-R 6 cognitive architec-
ture (Anderson, 2007; Anderson et al., 2004), 
and all source code is available for download 
from https://github.com/tamborello/postcom 
pletion-error and https://github.com/tamborello/
UNRAVEL, as well as in the online supplemen-
tary material. ACT-R represents a claim that 
cognition is modular. Each module can operate 
independently. A module may have one or more 
buffers with which it may communicate with 
the other modules. The procedural module is a 
rules-based execution system that matches “if-
then” rules to conditions presented by the set of 
buffers and their contents and then executes the 
rules’ actions. These actions are typically to move 
information between buffers, which may result in 
their respective modules’ performing some action, 
such as “retrieve from long-term memory the sum 
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of three and four” or “move the mouse cursor to 
the location where I’m currently looking.” We 
implemented our model using a cognitive archi-
tecture because we wanted to use the decades of 
research underlying the architecture to constrain 
the choices we made in model development. All 
of the model mechanisms are ACT-R’s mecha-
nisms, which have the support of vigorous testing 
from an active community of researchers (ACT-R 
Research Group, 2013).

Our model predicts error to manifest as dif-
ferent types according to whether it occurs dur-
ing an action selection process or a deliberate 
rehearsal process. During the action selection 
process, the model uses a set of limited-capacity 
buffers containing moment-to-moment goal and 
problem state (or “imaginal”) representations to 
spread retrieval activation to long-term memory. 
Retrieval activation varies according to strength 
of associative priming (Anderson et al., 2004). 
Since all memory activations decay, the model can 
engage a deliberate rehearsal process to increase 
probability of future retrospective retrieval of the 
rehearsed memory. Here, decay serves to sup-
press the activation of older memories so that 
they are less likely to interfere with newer ones 
(Altmann, 2002). Table 1 enumerates the major 
ACT-R theoretical constructs used by this 
model, their operation within ACT-R, and their 
implications for this model.

normal task Execution
Table 1 described the pieces of the model and 

theoretical motivation for borrowing them from 
ACT-R. The following sections explain how 
those pieces work together to produce correct 
and error behaviors.

Selecting the next step. We conceptualized 
action selection as a prospective memory task, 
using a representation of the current task context 
to associatively prime retrieval of a memory rep-
resentation of the next step. These task context 
representations are simply the goal memories that 
currently reside in the active buffer contents. 
Memory activation spread from the model’s active 
buffer contents to memories residing in long-term 
memory, and it did so as a function of the strength 
of association between an item j in a buffer to 
memory i in long-term memory (Anderson, 2007; 
Anderson et al., 2004). We assumed these patterns 

of association strength were learned during train-
ing and followed the sequential co-occurrences of 
the actions in the task environment that these 
memories represented (Botvinick & Plaut, 2004). 
This gave the model a way to adjust its behavior 
according to context.

At the beginning of each simulation run, our 
model set strengths of association from each step’s 
representation to the next according to m ÷ (i – j). 
Association strengths remained static for the dura-
tion of each model run. Here, j is the serial posi-
tion within the task of the step encoded by a mem-
ory representing the model’s current context, 
namely, the action it just performed. Item i is the 
serial position within the task of the step encoded 
by an associated memory for an action in long-
term memory. The scalar m is a global parameter 
to set the maximum association strength. For 
example, if m were 5 and the model had just per-
formed the first step of a task, the association 
strength to the memory encoding the second step 
would be 5. The strength of association to the third 
step would be 2.5. This enabled associative chain-
ing from the model’s current context to the next 
procedure step while also producing a graded rep-
resentation that decreased in strength with increas-
ing psychological distance, a feature borrowed 
from Altmann and Trafton (2007). As will be 
shown in the error behavior section, this graded 
representation is a crucial feature of this model.

People tend to remember their actions because 
we typically form episodic memories of events 
we experience. Each time the model performed 
the action specified by the memory it had 
retrieved, it copied a reference to that action 
from the active buffer contents to an episodic 
buffer (Altmann & Trafton, 2002). The contents 
of that episodic buffer, once established, were 
then removed from the buffer and relegated to 
long-term memory. As such, the model gener-
ated a sequence of episodic memories epiphe-
nomenal to the process of task execution, with 
sequence retroactively indicated by relative acti-
vation strength of the episodic memories, the 
most recent being the most highly active.

Interruption and resumption
When the model was interrupted, it immedi-

ately tried to retrieve the last action it executed, 
which was encoded in one of these episodic 
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TAblE 1: ACT-R Theoretical Constructs and Their Implications for the Remember-Advance Process 
Model

ACT-R Construct Operation in ACT-R Model Implications

Chunk A single atomic unit of representation, 
such as a memory or percept.  
One chunk may and often does 
refer to a handful of other chunks.

Task state information, such as current 
position within the sequence of a 
task, is encoded in chunks, one task 
step per chunk.

Spreading  
activation

Primes retrieval from long-term 
memory.

A chunk held within certain buffers will 
propagate activation to other chunks 
in long-term memory.

 Activation source Spreading activation provided by a 
buffer, divides evenly among all the 
chunks referenced from the buffer 
chunk.

The same buffers used to maintain a 
working, internal representation of 
the task state also prime retrieval 
of memories encoding subsequent 
states.

 Buffer contents The contents of active buffers form  
an internal representation of task 
state, percepts, and motor plans. 
Any chunks held there may be 
accessed by cognitive modules 
other than just the one to which  
that buffer belongs.

The imaginal buffer contains a single 
chunk encoding the current task 
step. When it is time to remember 
the next step, all of the imaginal 
buffer’s activation source propagates 
to chunks in long-term memory 
according to strength of association. 
The goal buffer also contains a 
chunk encoding the current task 
step, and so it also contributes some 
spreading activation. However, 
because the goal buffer also 
contains some intra-step control 
information (e.g., “retrieve the next 
step” or “respond”), the goal buffer 
only provides half as much spreading 
activation as does the imaginal 
buffer.

  Association  
 strength

Association strength encodes how 
strongly one chunk may prime 
retrieval of another chunk. Chunks 
only prime retrieval when they are 
in a buffer that provides retrieval 
activation source.

One chunk encoding a task step 
associates strongly to the chunk 
encoding the next task step. Thus, 
when such a chunk is retrieved from 
long-term memory and then copied 
to the imaginal and goal buffers, it 
associatively primes retrieval of the 
chunk encoding the subsequent task 
step.

Base-level activation 
(BLA)

BLA provides an estimate of future 
need of a chunk based on past 
use. Chunks in long-term memory 
retrieved more frequently or more 
recently are more highly active.

Rehearsal, which the model 
performs during interruption, 
keeps the rehearsed chunk active 
by periodically retrieving it while 
allowing other similar, competing 
chunks’ activations to decay.

(continued)
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memories. Retrieval provided a boost of activa-
tion to the retrieved memory, making it more 
likely to be retrieved during a future retrieval 
attempt. Upon resumption, once the model had 
retrieved one of these episodic memories, it then 
used that episodic memory to bootstrap its task 
context representation. Altmann and Trafton 
(2007) demonstrated that this process occurred 
gradually, and so the model at first copied the 
retrieved episodic memory to only the imaginal 
buffer and not also to the goal buffer. The conse-
quence is that there will be relatively less activa-
tion source to spread to long-term memory for 
retrieval of the next step, making retrieval take 

longer and be more likely to result in retrieval of 
an incorrect memory for the given task context.

Error behavior
We followed ACT-R’s architecture to develop 

our own theory of the causes of error dur-
ing normal task execution. Errors arise out of 
the interaction of noise with the processes of 
normal task execution (Figure 1). Each of the 
two processes, action selection and deliberate 
rehearsal, function differently, and so the effects 
of their combinations with retrieval activation 
noise produce the two different sequence error 
types, omissions and perseverations. Note that 

ACT-R Construct Operation in ACT-R Model Implications

 Retrieval count Retrieving a chunk increases its BLA. When rehearsing, the model 
implements a strategy of maintaining 
retrieval availability of a memory by 
increasing the retrieval count of a 
memory.

 Decay Time elapsing since last retrieval 
decreases BLA. Decay is a power 
law function of time.

Besides increasing retrieval count, 
rehearsal works against decay of the 
rehearsed chunk’s BLA.

Activation noise Retrieval from long-term memory is 
a stochastic process. ACT-R adds 
transient activation noise, with a 
mean of 0 and standard deviation 
set by ACT-R’s ANS parameter (0.3 
for this model), to every chunk’s 
activation when it is evaluated for 
retrieval.

Activation noise underlies all errors, 
with the manifested error type a 
result of what kind of retrieval is 
attempted, for example, a large 
quantity of noise occurring during 
prospective retrieval may lead to 
prospective interference, which may 
lead to an omission error.

Condition-action 
matching

At its heart, ACT-R is a production rule 
system wherein a production rule 
matches to a condition consisting 
of the buffer contents (multiple 
buffers may match). One rule 
matches and fires at a time. The 
rule then specifies some action, 
such as copying an alphabet letter 
retrieved from memory to a manual 
buffer and requesting a move of the 
hand to that letter’s position on a 
computer keyboard.

Production rules perform all the 
actions of the model, such as 
requesting long-term memory 
to retrieve a memory. They are 
the means by which the model 
transitions from one state to the 
next.

TAblE 1: (continued)
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the three modeled tasks made no affordance for 
any action that was not part of the experiment 
procedure. Therefore, any action performed 
was either the correct action or one of the pro-
cedure’s actions out of sequence and so was by 
definition an omission or perseveration by one 
or more steps.

Omission. Because of the model’s graded asso-
ciative representation—namely, that sequence 
memory chunks each associated most strongly to 
their immediate successor but also less strongly to 
more distantly future successors—it occasionally 
omitted a step when transient activation noise was 
such that it simultaneously suppressed activation 
of the correct next step and enhanced activation of 
an immediately subsequent item. In conditions of 
normal task execution, the model occasionally 
(≈1%) omitted one or two steps.

As in Altmann and Trafton’s (2007) work, the 
model gradually rebuilt its task context repre-
sentation during the course of resuming its nor-
mal task execution cycle. Once it retrieved an 
episodic encoding of a past action, the model 
held task context representation in only one of 

two buffers that it normally used during task 
execution. It needed more time to build more 
task context representation, and meanwhile that 
representation was weak. For the model, this 
meant that it had less retrieval activation avail-
able to spread for its first action selection attempt 
after the interruption. With the proportion of 
activation provided by buffer contents smaller in 
this case while the amount of noise remained the 
same, the model was relatively more likely to 
retrieve the representation for an action that 
should come one or two more steps hence.

PCE. Some tasks, such as Byrne and Bovair’s 
(1997) Phaser Task, and Ratwani and Trafton’s 
(2011) Stock Trader Task, exhibit hierarchical 
goal structure. For instance, in the Phaser Task, 
procedure steps are physically arranged on the 
interface into functional groups, for example, 
actions having to do with a “charge phaser” sub-
task all took place within one cluster of interface 
elements. Subjects were trained to consider 
those steps as part of one cohesive subgoal, 
requiring completion in its entirety, as part of the 
main goal of firing the phaser. However, some 

Figure 1. The role of noise in the model’s memory processes: Associative spreading activation 
is the prospective memory process underlying selection of correct actions. When transient 
activation noise, a fundamental property of human memory, spikes during prospective retrieval, 
it can lead to an omission of one or more steps. The model implemented retrospective memory 
with an explicit rehearsal strategy that it threaded with the interrupting task. Spikes in transient 
activation noise during retrospective retrieval sometimes caused perseverations of actions from 
one or more steps previous.
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subtasks were only a single step long. They were 
part of the main procedure but may have had no 
obvious connection to other steps. Such structur-
ally isolated steps tend to exhibit much higher 
rates of error than other steps appearing within 
groups (Reason, 1990).

Postcompletion steps are both structurally 
isolated and tend to appear late in a procedure 
sequence. The model treats PCE as a special 
case of omission error. We assume that in tasks 
with a hierarchical goal structure, people retrieve 
a representation of the main task goal multiple 
times during the course of executing that task 
once. We adapted this assumption from the 
Anderson, Bothell, Lebiere, and Matessa (1998) 
model of sequence memory, although it is also 
congruent with Byrne and Bovair’s (1997) 
model. As in rehearsal, each time a goal is 
retrieved, its activation is boosted. If such a 
memory’s activation is already strengthened by 
repeated retrievals, and it also happens to be asso-
ciated to the current task context (because it will 
appear again soon in the task sequence), then it has 
both some undecayed base-level activation and 
some associative spreading activation. These two 
sources of activation coming together in the one 
memory makes the model even more likely than 
in the case of typical omissions to retrieve the 
memory of the main goal rather than the memory 
of the postcompletion step. This is why postcom-
pletion steps, when present, elicit greater rates of 
omissions than do other steps.

Perseveration. The episodic memory of the 
most recently performed step has the highest 
activation because it was referenced most 
recently. However, the next most recently refer-
enced step still has a high, albeit less so, memory 
activation level. Noise can temporarily make the 
memory of the next most recently performed 
step more active than the memory of the most 
recently performed step. Typically, this happens 
at interruption onset, when the model begins its 
rehearsal, because by this time the episodic 
memories from recent previous trials have only 
decayed somewhat and so are still retrievable. 
Retrieval noise can temporarily increase the 
activation of an episodic memory from a previ-
ous but recent trial while simultaneously sup-
pressing the activation of the episodic memory 
encoding the trial that was just completed. Then 

the model rehearses an incorrect but recent 
action, namely, from one or two steps back.

EmPIrIcAl StudIES
Our goal in selecting the following studies 

was to use well-documented, well-controlled 
studies of sequence errors to guide development 
of our model. We sought insight into perse-
verations, omissions, and PCE because they are 
common error classes and because we could 
find suitable human data corpori about them.

the Stock trader task
We used a version of Ratwani and Trafton’s 

(2011) Stock Trader Task. It is a kind of com-
puterized, interactive, single-page, form-filling 
task in which participants must follow a specific 
procedure (Figure 2).

Task and materials. The spatial layout of the 
interface (working from top to bottom down the 
left column and then the right column) and the 
operations required to perform the task were quite 
intuitive. The spatial layout of the task grouped 
steps by proximity. This encouraged use of an 
intuitive heuristic (“go down the column”) as well 
as having an isolated “clean-up” step at the end. 
This format followed the form of other tasks 
shown by GOMS analysis to lead to subgoaling 
(e.g., Byrne & Bovair, 1997). After entering infor-
mation in each module, the participant clicked the 
Complete Order button (upper right corner). 
Clicking the Complete Order button was the post-
completion step, and failing to click the Complete 
Order button constituted a PCE.

Design and procedure. Twenty-five George 
Mason University undergraduate students par-
ticipated for course credit. Each order on the 
Stock Trader Task constituted a single trial. Con-
trol and interruption trials were manipulated in a 
within-participants design; participants per-
formed 12 trials. Half of the trials were control 
trials with no interruption, and half were inter-
ruption trials with two interruptions each. The 
order of trials was randomly generated, and par-
ticipants did not have prior knowledge as to 
which trials would be control or interruption 
trials.

There were eight possible interruption points 
in the Stock Trader Task. These points occurred 
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after clicking the Confirm button following the 
first seven modules, including just prior to the 
postcompletion step. The location of the inter-
ruptions on a trial-by-trial basis was randomized 
with the constraint that exactly two interruptions 
occurred just prior to the postcompletion step 
and at least one interruption occurred at each of 
the other seven possible locations. There were 
12 postcompletion error opportunities, 1 during 
each trial. Six of these opportunities were during 
control trials with no interruptions, 2 opportuni-
ties were immediately following an interruption, 
and 4 opportunities were during interruption tri-
als where an interruption occurred at a point that 
did not immediately precede the postcompletion 
step.

After the experimenter explained the Stock 
Trader Task and interrupting task to the partici-
pant, the participant completed two training trials 
(one trial with and one trial without interruptions) 
with the experimenter. Following these two train-

ing trials, participants had to perform two consec-
utive randomly selected trials on their own with-
out making a postcompletion error before the par-
ticipant could begin the experiment. Forcing 
participants to perform two consecutive error-free 
trials ensured participant proficiency at the task 
before beginning the actual experiment. Each par-
ticipant was instructed to work self-paced. When 
performing the interrupting task, participants were 
instructed to answer the addition problems as soon 
as the solution was known and to answer as many 
addition problems as possible in the time interval. 
Upon resumption of the Stock Trader Task, there 
was no information available on the interface to 
indicate where to resume.

Results. Interruption had a much larger effect 
on postcompletion error rates than on simple 
omission rates (Figure 3). Mean interruption 
PCE rate was 0.34 (i.e., subjects committed the 
PCE one-third of the time they encountered the 
PC step), while mean PCE rate in the control 

Figure 2. The Stock Trader Task interface resembled a web form.
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condition was only 0.01. Mean interruption 
omission was 0.05, and mean omission rate for 
the control condition was 0.003. In terms of 
effect size, Cohen’s d for interruption’s effect on 
the postcompletion step was 0.67, a large effect, 
compared to 0.20 for interruption’s effect on 
non-postcompletion steps, a small effect size. 
Looking at it the other way, the effect of being 
interrupted was much more severe for subjects 
working on the postcompletion step (d = 0.54) 
than for subjects working on a non-postcomple-
tion step (d = 0.05).

Model data collection and performance. 
Because our simulation was stochastic, we could 
not run it once to produce the true prediction of 
the theory that the simulation implements. But 
because we wished to treat the simulation as 
theory and the simulation’s data as the theory’s 
true predictions, we wanted to run the simula-
tion enough times to produce a sample yielding 
stable predictions of performance for conditions 
of interest. To the extent that effect size and the 
number of model runs produced high statistical 
power, we could be confident that the data set 
produced by the model runs was usefully close 
to its true predictions (Ritter, Schoelles, Quigley, 

& Klein, 2011). For the effects we model, typi-
cally 1,000 runs more than suffices.

The mean PCE rate for the Stock Trader mod-
el’s control condition was 0.0101 (SD = 0.0301, 
SEM = 0.0010) and 0.3175 (SD = 0.3302, SEM = 
0.0104) for the interruption condition, for a dif-
ference of mean rates of 0.3074 (pooled SD = 
0.2345), yielding an effect size of 0.9265. With 
effect size and N this large, power is effectively 
1 for any sensible significance test (Howell, 
2002). The model’s rates of PCE and omission 
for control and interrupted trials closely matched 
those of participants, r = .976, root mean square 
deviation (RMSD) = .0334.

The model retrieved each subsequent step 
using the prospective memory process described 
previously. As described previously in the PCE 
section, functionally isolated steps like the post-
completion step both immediately followed and 
preceded retrieval of the task’s main goal, and so 
such steps were subject to much greater degrees of 
retrieval interference. Furthermore, at resumption, 
the interference effect was exacerbated by the 
degraded context representation described in the 
previous “Omission” section.

PCE’s distinction from simple omission is 
illustrated by comparison of their rates. If PCE 
were simply a matter of an omission error hap-
pening to fall at the last step, then PCE and 
omission rates should be identical. However, 
Figure 3 shows clearly that the two error types 
are different. What makes PCE unique is that it 
is a product of the simultaneous convergence of 
all of these factors: (1) goal activation decay 
below that of a competing goal’s, (2) a compet-
ing goal’s relatively high memory activation 
because it happens to have also been retrieved 
recently, (3) working memory structures with 
limited capacity to spread activation to long-
term memory retrieval, and (4) some context 
representation was not immediately available 
upon resumption.

the Phaser task
We applied our model to Byrne and Bovair’s 

(1997) Phaser Task from their second experi-
ment. Like the Stock Trader Task, the Phaser 
Task was designed to elicit postcompletion 
errors. Unlike the Stock Trader Task, it did so by 
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Figure 3. Mean error rates from the Stock Trader 
Task from human subjects (open squares) and model 
(solid circles). Error bars display the 95% confidence 
interval of the mean.
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loading subjects’ working memory rather than 
by interrupting subjects.

Task and materials. The authors of that study 
collected data from 64 undergraduates at the 
Georgia Institute of Technology. They used an 
interactive, single-page computer task that 
implemented a kind of video game procedure to 
arm and fire a starship phaser from the fictional 
Star Trek franchise (example depicted in Figure 
4). As in the Stock Trader Task, participants 
strictly followed a procedure. The spatial layout 
of the task grouped steps by proximity. This 
encouraged use of an intuitive heuristic (“do all 
the items in the cluster”) as well as having an 
isolated “clean-up” step at the end. Byrne and 
Bovair’s own Goals, Operators, Methods, and 
Selection (GOMS) analysis of their Phaser Task 
resulted in a hierarchical task representation that 
they used in their CAPS cognitive model of the 
task.

Design and procedure. Participants learned 
to perform the Phaser Task during a training 
phase and then returned later to perform during 
a testing phase. During some test trials, subjects 
performed a concurrent three-back memory task 
intended to increase their workload. Further-
more, Byrne and Bovair (1997) administered a 
working memory span test. They used the results 

of this span test to group subjects into high and 
low working memory capacity groups, split on 
the median working memory span score.

Model data collection and performance. As 
for the Stock Trader Task, we executed the 
model simulation 1,000 times. For each working 
memory capacity condition, we took the differ-
ence of postcompletion error rate of the two load 
conditions. The difference of effect on model 
PCE rate of the capacity condition difference 
scores was 0.4339. This is a very large effect, 
1.36 times the pooled standard deviation. And as 
in our modeling study of the Stock Trader Task, 
our power was effectively 1.

The model inherited a limited capacity work-
ing memory construct from ACT-R. This means 
that the model has a limited pool of memory 
activation to spread to retrieval from long-term 
memory. Occupying buffer space with the phas-
er’s additional memory task or by adjusting a 
parameter related to individual differences in 
working memory capacity, source activation 
available to the imaginal buffer (0.8 for high 
capacity subject, 0.3 for low, fit empirically) had 
the same ultimate effect on the model’s prospec-
tive retrievals as did the interruption-resumption 
process of the Stock Trader Task. It restricted  
the amount of retrieval spreading activation 

Figure 4. Example of Phaser Task interface from Byrne and Bovair (1997).
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available to the prospective retrieval process. 
This is why the model’s PCE rate varied accord-
ing to working memory load and working mem-
ory capacity, following the pattern observed in 
Byrne and Bovair’s (1997) subjects.

The model’s implementation of Byrne and 
Bovair’s working memory capacity theory of PCE 
replicated the capacity and working memory load-
ing factors in the Phaser Task’s subject data (Fig-
ure 5), r(4) = .920, RMSD = .0657, for mean PCE 
rates (Tamborello & Trafton, 2013). The key is the 
model’s dynamic interaction of a limited capacity 
to spread memory activation with the base-level 
activation feature of the structurally isolated step. 
Because of the working memory load imposed by 
the three-back memory task, the model has less 
memory activation to spread to long-term mem-
ory. But because the main goal of the task imme-
diately follows the postcompletion step, it also 
receives some memory activation because of the 
graded spreading activation described previously 

in the “Selecting the Next Step” and “Omission” 
sections. Because the main goal often gets 
retrieved during the course of task execution, it 
has a relatively elevated activation strength in 
addition to its receipt of some spreading activa-
tion. This makes the memory for the main goal a 
particularly strong competitor against a postcom-
pletion step memory that is weakened by a combi-
nation of relatively less marginal spreading activa-
tion received from active buffer contents relative 
to competing goals and a longer time elapsed since 
its last retrieval.

the unrAvEl task
In contrast to the Stock Trader and Phaser 

Tasks, the UNRAVEL Task was designed to 
study not postcompletion error but omission 
(forgetting an action) and perseveration (repeat-
ing an action). Furthermore, in contrast to the 
single-page interactive form-filling paradigm, 
it used a simple, continuous, stimulus-response 
format.

Task and materials. The UNRAVEL Task 
(Altmann et al., 2014) is a sequential memory 
task in which subjects perform a two-choice 
decision regarding features of a simple alphanu-
meric display (Figure 6). UNRAVEL was an 
acronym for the stimuli features subjects 
responded to, such as that one item is Under-
lined or italicized, or that the letter in the display 
is Near to or far from the beginning of the alpha-
bet, and so on. The UNRAVEL acronym speci-
fies the order in which subjects must make these 
decisions, one decision per trial.

Each decision in the UNRAVEL sequence 
had only two possible options, and each of the 
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Figure 5. Mean postcompletion error (PCE) rates, 
human data from Byrne and Bovair’s Experiment 2 
Phaser Task (open squares) and model (solid circles), 
as a function of memory load and capacity. Error bars 
display the 95% confidence interval of the mean. 
Participants in the low working memory group did 
not reliably differ in PCE rate as a function of load 
condition (Byrne & Bovair, 1997).
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Figure 6. An example UNRAVEL display. Left: The 
underlined numeral 9 is displayed in red. Right: The 
italicized letter X is yellow in this example.



388 May 2017 - Human Factors

14 possible options were uniquely indicated by a 
single letter to be pressed on the keyboard as the 
subject’s response. Thus, when subjects erred, it 
was possible to infer which of the task’s steps 
they thought they were performing and to then 
count by how many procedure steps forward or 
backward they erred.

Design and procedure. Subjects were to 
remember which step of the UNRAVEL sequence 
they were currently on and to respond to the stimu-
lus as appropriate for that step. For example, a sub-
ject seeing Figure 6 (left) and having just completed 
the U step would now perform the N step. Since 
the letter B is near to the beginning of the English 
alphabet, N would be the correct response. As 
soon as subjects pressed a key indicating 1 of the 
14 potential responses, the experiment advanced 
to the next trial. In this example, the next correct 
trial would be an R action, to indicate whether the 
highlighted character is red or yellow.

Subjects performed approximately 320 
(depending on randomized inter-interruption 
interval) UNRAVEL trials, completing one 
sequence of UNRAVEL steps after another. The 
experiment interrupted subjects 10 times per each 
of four trial blocks, at random once every three to 
six trials. After interruption, the interface provided 
no cue that might aid subjects’ recall of their posi-
tion within the UNRAVEL task sequence.

The interruption task was to transcription 
type a randomized sequence of the 14 response 
letters. Each time subjects were interrupted, they 
typed one, two, or three of these sequences 
before returning to the main task. These three 
interruption duration conditions lasted approxi-
mately 13, 21, and 30 seconds, respectively, 
depending on how quickly subjects could per-
form the transcription typing task.

Results. Without interruption, the “baseline” 
trial type, subjects hardly erred, only omitting 
one step 1% of the time and hardly ever omitting 
more than one step (Figure 7). Post-interruption, 
subjects erred much more but tended to do so 
mainly one step backward (–1) or forward (+1). 
Human resumption performance trended slightly 
toward chance as interruption duration increased.

Model data collection and performance. We 
executed our UNRAVEL model 1,000 times. We 
correlated its mean sequence error rates per trial 
type and interruption duration with those of 

Altmann et al.’s (2014) subjects. That is, model 
run means and human subject means each contrib-
uted 36 data points to Pearson correlation. With  
r = 0.933 and model N = 1,000, power was effec-
tively 1 (Howell, 2002). We found that overall the 
model’s data predicted human data quite well,  
R2 = .87, F(1, 34) = 227, p < .001 (Tamborello, 
Trafton, & Altmann, 2015).

The model’s graded task context representa-
tion reproduced participants’ tendency to omit 
one step in 1% of the “baseline” (non-inter-
rupted) condition trials. The graded task context 
representation, coupled with the manner in 
which the model gradually rebuilt its task con-
text representation at resumption, led to greater 
rates of omission at this phase of the task, with 
gradually decreasing rates for increasing num-
bers of steps skipped. The increased omission 
rate is a direct result of the model’s degraded 
context representation at resumption while the 
decrease in omission rate for increased number 
of steps skipped is a result of the graded associa-
tion strength from context to action memories.

For perseverations at resumption, the graded 
effect of step distance is due to the gradual decay 
of episodic memory activation strength. At inter-
ruption onset, episodic encodings of trials one or 
two steps ago still have some memory activa-
tion, though not as much as for the episodic 
memory encoding the step that was just com-
pleted. Because retrieval is probabilistic, there is 
some small chance that one of these recent but 
wrong episodes could be recalled for rehearsal 
instead of the episodic memory encoding the 
action that was just completed.

Furthermore, the model’s rehearsal algorithm 
provides an explanation for an interruption dura-
tion’s deleterious effect on resumption perfor-
mance. Each subsequent rehearsal has a chance 
of retrieving an incorrect memory. When an 
incorrect memory is retrieved, it receives the 
additional base-level activation because it was 
retrieved in place of the correct memory. This 
means that at the next rehearsal phase, it will 
have an even greater chance of being retrieved 
in place of the correct memory.

The UNRAVEL model’s maximum associa-
tion strength—the maximum amount by which 
one chunk may associate to another—was 7 ver-
sus 2.2 for the two PCE models (fit empirically). 
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Likewise, the amount of memory activation 
propagated from its imaginal buffer was 1.1.

dIScuSSIon
The handful of processes comprising the 

process model, interacting dynamically, are 
sufficient to explain omissions, postcompletion 
error, and perseverations. These processes are 
synthesized from prior work in this field into a 
unified model. We speculate that the particular 
combination of processes explaining PCE will 
also explain omission errors in other structur-
ally-isolated procedure steps.

comparison With byrne and bovair’s 
Working memory model

Like Byrne and Bovair’s (1997) CAPS 
model, this model also explains PCE in terms  
of limited-capacity working memory. It does 
this both by working memory loading and by 
varying capacity, implemented in the model 
as varying activation source available from 
the imaginal buffer. However, this model also 
addresses errors with causes beyond available 
working memory capacity. Its omissions rely 
on the temporal co-occurrence basis of the 
strengths of association from one action mem-
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ory to subsequent action memories. Its perse-
verations rely on the gradual decay of episodic 
memories’ base-level activations over time.

comparison With memory for Goals
Altmann and Trafton (2002) make the pre-

diction that priming is critical to correct perfor-
mance of postcompletion steps. The Remem-
ber-Advance Process Model reliably performs 
postcompletion steps only when it has its great-
est amount of priming available. One priming 
mechanism they suggest is “deliberate cognitive 
operations . . . [such as] rote associative (pro-
cedural) learning—through temporal co-occur-
rence, the step that precedes a postcompletion 
action will eventually come to serve as a cue for 
the action itself” (pp. 64–65). In the Remember-
Advance Process Model, associative temporal 
priming was in fact the default method of action 
selection, one goal priming retrieval of the next. 
The strengths of association followed other the-
ories of learned co-occurrence (e.g., Botvinick 
& Plaut, 2004). Furthermore, when goals must 
be suspended, as during interruption, the model 
implemented a deliberate goal-strengthening 
strategy to enable resumption—rehearsal.

comparison With remember-Advance 
Formal model

The Remember-Advance formal model claims 
that for normal task execution people perform 
the same two-phase retrieval that they use for 
resumption. This means that for each step people 
must recall what they did on the last step. The 
implication here is that people do not retain a 
current task context representation in any sort of 
working memory–like buffer but instead must 
recreate it with each step of the task.

The process model somewhat simplifies 
assumptions underlying task execution relative 
to the Remember-Advance formal model. The 
process model uses two-phase retrieval sparingly 
because time-wise, it is expensive, and even 
small-scale costs of time matter (Gray & Boehm-
Davis, 2000). Instead, for normal task execution 
it is a simpler explanation and provides for more 
efficient task execution for the model to retain 
some task context representation in a working 
memory capacity, a buffer, which it has available 
anyway. In fact, retaining such a task context in 

active buffers is critical for action selection in 
normal task execution because this task context 
representation serves as the source of retrieval 
from long-term memory of the next action to be 
performed. Furthermore, the capacity of this 
working memory construct is quite limited in the 
process model. It is for this reason that the pro-
cess model engages in a cognitively threaded 
(Salvucci & Taatgen, 2008) rehearsal of episodic 
memory while executing the interrupting task. 
Furthermore, the limited capacity nature of the 
process model is critical for its explanation of the 
Byrne and Bovair (1997) data.

Explicit rehearsal Strategies
The process model incurs the expense of 

rehearsal due to two necessary factors: (1) It 
must preserve access to state information over 
a longer duration than what decay would allow, 
and (2) it does not have the working memory 
capacity to retain this information and simul-
taneously accomplish its interrupting task. Our 
theory, as implemented by the process model, 
is that people use a cognitive workaround to 
preserve reference to a past task context repre-
sentation in spite of the limited nature of work-
ing memory. At interruption onset, people pack 
away task state information into a form that can 
be retrieved later (an episodic memory), using 
a minimum of cognitive resources to rehearse 
throughout the interruption. At resumption, they 
attempt to retrieve that episode and then use 
it to reload the task context information to the 
active buffers.

Interruption duration impacts resumption 
performance because with every rehearsal itera-
tion, there is a chance that an incorrect episodic 
memory could be retrieved. By ACT-R’s base-
level learning mechanism, every time a memory 
is retrieved, its activation is strengthened. But as 
time elapses from the last retrieval, the memo-
ry’s activation decays. Typically, this manifested 
in the model’s behavior when the model would, 
at rehearsal onset, retrieve by mistake an epi-
sodic memory from one or two trials ago rather 
than from the just completed trial.

Anecdotally, we noticed that incorrect epi-
sodic retrievals at resumption typically stemmed 
from an incorrect retrieval that occurred at the 
onset of rehearsal. Thus, the model would 
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rehearse the wrong episodic memory. However, 
occasionally the model would retrieve an incor-
rect episode later during retrieval or at resump-
tion, and chances of this happening increased 
with increasing interruption duration.

Example Application: task State cuing
The model’s performance of all three dis-

cussed tasks depends critically on its ability to 
use a representation of the current task state to 
prime recall of subsequent procedure steps. This 
suggests priming as a means to mitigate post-
interruption error. If a task interface could pro-
vide a sort of progress bar with specific named 
steps corresponding with the exact terminology 
describing the procedure that is known to the 
human operator, it should provide effective 
retrieval priming.

Or, where it may be unfeasible for the inter-
face to track the task state, it could instead pro-
vide a convenient note-taking facility. This could 
provide human operators with a quick “brain 
dump,” a verbal record of the person’s internal 
task state that could be referenced later. Pro-
vided operators have at least a few seconds 
warning when an interruption occurs, they could 
write quick descriptions of the last action per-
formed, the next action to perform, and any 
other pertinent details, analogous to how office 
workers often use Post-It notes to help them and 
their coworkers process paperwork.

concluSIon
The process model demonstrates one man-

ner in which complex behavior arises from the 
interaction of a handful of processes. Associative 
spreading activation from active buffer contents 
to long-term memory drives selection of the 
next action. However, it sometimes combines 
with retrieval noise and graded association 
of task context to cause omission. These pro-
cesses of omission, combined with strengthen-
ing of a main goal memory, drive up omission 
rates of structurally isolated steps such as the 
postcompletion step. Meanwhile, during inter-
ruption, decay imperfectly prevents retroac-
tive interference; older episodic memories can 
intrude on newer ones, leading to perseveration. 
At resumption, people gradually bootstrap from 
their rehearsed episodic memory to the task 

context representation they require for normal 
task execution. But this ability to reconstruct 
a past task context representation comes with 
some cost of higher omission rates from the 
degraded interim task context representation.

In this process model, separate memory sys-
tems each provide fairly reliable performance 
for the prospective and retrospective retrievals 
necessary for many daily tasks. But it is their 
dynamic interaction, along with the system’s 
own stochasticity, from which error behaviors 
emerge. The model makes a strong claim that 
some amount of human error is inevitable in 
routine procedures. System designers should 
plan for it and make systems resilient to it wher-
ever and however possible.

The model is relatively broad and is the first 
quantitative model that we know of that can 
account for multiple error types in data from 
multiple labs. With some further refinement, 
for a given task it may be able to predict a pri-
ori how much aggregate error will result both 
in baseline conditions and in conditions of 
aggravating factors like interruption and high 
workload.
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kEy PoIntS
 • Certain classes of human routine procedural error 

are demonstrably inherent to the cognitive pro-
cesses underlying routine procedural behavior.

 • Omissions and postcompletion errors (PCEs) arise 
out of prospective memory for task sequences.

 • PCE is a special case of omission error. It is due 
to a conjunction of goal structure, associative 
spreading activation, and memory strengthening.

 • Perseverations occur because at the onset of task 
place rehearsal, such as at interruption onset, 
memories of actions from one or two sequence 
items ago are still slightly active. Transient noise 
may make one of these memories more active at 
rehearsal onset than the correct encoding of the 
last action performed.
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 • Model source code is available at https://github.
com/tamborello/postcompletion-error and https://
github.com/tamborello/UNRAVEL.

SuPPlEmEntAry mAtErIAlS
Supplemental material for this article is available 

with the manuscript on the Human Factors website.
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