
 

Abstract— The ability to perform robust, precise, real-time 

visual recognition is extremely critical for the use of robotic 

systems in real-world applications. This paper explores the use 

of Convolution Neural Networks (CNN) and human assisted 

training in teaching a robot to recognize novel objects. 

 We investigated the impact of providing instructions to a 

human teacher during a training scenario for novel objects. 

Participants in the naïve condition were provided verbal 

instructions by the robot, and participants in the embodied 

condition were provided embodied demonstrations by the 

robot. The results showed that a vision system trained by 

participants with embodied instructions clearly outperformed a 

system trained by naïve participants. The latest computer 

vision techniques combined with human assisted teaching was 

found to provide excellent results for novel object recognition.  

 

I. INTRODUCTION 

The last several years have witnessed a huge surge in 

projects that transition robotic systems from research 

laboratories to natural environments for real-world 

applications [1,2,3]. Advanced autonomous robots are being 

designed to assist humans in a variety of settings ranging 

from domestic environments to workplace needs [4]. In spite 

of the advancements in autonomous robotic systems, 

efficient and accurate perception remains a significant 

impediment.  

An important practical issue is the difficulty in gathering 

labeled images that can be used to train perception systems.  

Also, since these systems use two-dimensional images to 

learn and recognize three-dimensional objects, the 

availability of various poses or viewpoints in the training 

images is critical to the performance of learning algorithms 

[5]. In this study, we explore the use of a combination of 

deep learning techniques and human assisted teaching 

strategies for training novel objects on a robot quickly and 

accurately. 

Deep learning using convolutional neural networks  

(CNN) provides an accurate and efficient way to recognize 

objects.  Unfortunately, training a CNN requires a large 

amount of data, partially due to the number of free 

parameters that must be tuned.  For example, the popular 

ImageNet dataset [6] contains 1.2 million images with 1000 

categories. Existing datasets may not have objects that are of 
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interest to the user. In such cases, fine-tuning can be an 

effective way to update an already trained CNN to recognize 

domain specific objects [7]. In fine-tuning, a CNN is adapted 

to new objects of interest by fixing most parameters, 

focusing on training of only the final layer(s) of the network.    

Although this requires substantially less data [7], the 

performance still depends on the availability and the quality 

of the data used for fine-tuning. The assistance of a human 

collaborator/teacher can be a very successful method for 

acquiring images to fine-tune the network. 

We examine a scenario where the robot arrives at an 

unfamiliar environment with an already trained vision 

system (i.e., CNN). The robot then has to understand its new 

surroundings, and objects around it. In addition to the object 

classes it has been trained on, it will need to learn new 

objects in its new settings. A human teacher will assist the 

robot in collecting labeled data needed to learn new objects. 

We assume that a typical teacher is unfamiliar with the 

intricacies of robots and perceptual systems, but is familiar 

with different forms of social learning [8]. The human-robot 

interaction and teaching strategies are likely to vary between 

teachers and can vary greatly based on the instruction 

provided to them. In order to understand the impact of these 

instructions on the teaching approaches, we conducted a 

human subject study. We specifically investigated the 

teaching strategies adopted by a teacher who was provided 

embodied instructions versus a naive teacher.  We evaluated 

how these strategies effect fine-tuning and the robot’s vision 

system. In the human trials we collected real-time data with 

a humanoid robot in a setting that incorporates imperfections 

in real world conditions. 

Thus, this article investigates the viability of using the 

latest machine learning algorithms combined with human 

assisted training for object recognition on a robotic platform.  

 

II. RELATED WORK 

The past decade has seen extensive advances in the 

development of methodologies, algorithms and models to 

address the limitations in visual object recognition. Many of 

the earlier approaches use multiple handcrafted features 

extracted from two-dimensional RGB images and these 

features are then fed to classifiers to learn recognition 

models. Some of the popular hand-designed features are 

Scale Invariant Feature Transform (SIFT) [9] and Histogram 

of Oriented Gradients (HOG) [10]. In addition, several 

biologically inspired features have been developed that 

exhibit a good trade-off between generalization ability and 

discrimination ability for object recognition [11, 12]. With 

the advent of deep convolutional neural networks (CNN), 

these handcrafted features have been surpassed by efficient 
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supervised or semi-supervised algorithms that can directly 

learn and hierarchically extract features from the data to 

provide “end-to-end learning” [13, 14]. Further, it has been 

demonstrated in multiple studies [7, 15] that it is possible to 

fine-tune the pre-trained (on datasets such as ImageNet) 

models of these deep network architectures to new classes. 

This fine-tuning technique offers a powerful way to leverage 

existing datasets to train new tasks and has delivered very 

promising result in a wide range of applications from 

medical imaging [16] to remote sensing [17].   

Most of these studies using deep neural networks are 

conducted on single-view and multiple instance databases 

[18, 19]. A study by Held et. al. [20] trains these networks 

with multi-view datasets consisting of multiple instances as 

well as multiple poses and orientations. This approach was 

shown to make the network more robust to viewpoint 

changes and could then be used for single-view instance 

recognition.  

  Robustness to viewpoint or poses is extremely critical 

during three-dimensional object learning in a robotic 

domain, since the robot is unlikely to encounter the same 

object from the identical viewpoints during the recognition 

phase without additional work. In such cases, the assistance 

of a human teacher can be used to gather multi-view dataset 

for training the network. 

There are a few studies that investigate the challenges 

associated with learning novel objects in real-world 

environments with the assistance of human teachers. For 

example, Azagra et. al. [21] presented an incremental 

learning framework using human-robot assistance and 

interaction. The focus of the paper was to demonstrate the 

advantages of multimodal data using image and language 

features. The paper also showed an incremental approach 

using clustering ideas and nearest neighbor approach to learn 

object models. The system achieved results comparable to 

off line-trained system, while operating on a much more 

limited amount of stored data. 
In another study, Pasquale et. al. [22] conducted a multi-

day trial to test the incremental learning capabilities of CNN 
using an iCub platform with human assistance. The study 
focused on a single assistant (a domain expert) and showed 
preliminary evidence that the classification accuracy of the 
predictor trained on the mixed dataset from multiple days 
outperformed that trained on images acquired on a single 
day. While the focus of these papers is incremental learning 
and use of multimodal data, our goal in this paper is to 
explore the impact of providing instructions to the human 
assistants on training the perceptual system of a robot. 

III. Methodology 

This section describes the details of the hardware 
platform and the learning algorithm, experimental design 
and procedure, and data collection and analysis. 

3.1 Hardware Platform 

The robotic platform used in this study is Xitome’s 
Mobile Dexterous Social (MDS) robot named Octavia. 
Octavia has two highly agile arms and a flexible humanoid 
torso (Fig. 1). Her face can be used to present a wide variety 
of expressions using gaze, eyelids, jaw and eyebrows. In this 

study, Octavia uses gaze (at the participant’s face and 
objects in the world), facial expressions and hand gestures to 
keep the participant engaged in the training procedure. A 
Kinect 3D V2 sensor is mounted on her upper torso to obtain 
depth data and RGB Images. 

3.1 Learning Algorithm  

In this study, we use a Convolutional Neural Network 
(CNN) that contains eight learned layers. The Initial layers 
of the CNN architecture consist of convolutional, local 
response normalization, and max pooling layers (Fig. 2). The 
top layers of the network are three fully connected layers 
‘FC6’, ‘FC7’, ‘FC8’. The algorithm is implemented and 
trained using Caffe, a fully open-source software framework 
that offers clear access to deep architectures and is deployed 
on NVIDIA Titan X and 1070 GPUs. We refer the reader to 
the original papers for a more detailed description of the 

Figure 1: Experimental environment for the human subject 

study. A participant teaching a handheld object to the 

humanoid robot Octavia. 

  

algorithm and framework [23]. We use the standard AlexNet 
deep CNN model available in the Caffe repository [24]. This 
model is trained on ILSVRC 2012 dataset with over a 
million images annotated with 1000 ImageNet classes. Since 
the numbers of training images are limited in a robotic 
domain, fine-tuning methodology [7] is used in this study. 
The AlexNet model is fine-tuned with experimental data by 
re-training the final fully connected layer using the 
Stochastic Gradient Descent (SGD) method with adaptive 
subgradient. The overall learning rate (base_lr) is set to 
0.001 and the step-size to 20000. The lr_mult on the final 
layer is boosted so that the new layer learns faster than the 
rest of the model (10 for final layer and 1 for all the other 
layers). The architecture was trained for 100K iterations on 
mini-batches of size 50 samples. 

Figure 2: Schematic of the AlexNet Convolutional Network 

model. 
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3.3. Experimental Procedure  

Forty English-speaking participants were recruited from 
Naval Research Laboratory (NRL) and randomly assigned to 
one of the two groups. The study was approved by the local 
Institutional Review Board (IRB) and written informed 
consent was obtained from each participant after a full 
explanation of the risks and benefits involved in the study. 
The participants were then introduced to Octavia. 

The participants were first given a brief overview of the 
robotic platform, sensors and interfaces and the guidelines to 
be followed during the experiment (Fig. 1).  Octavia then 
greeted the subjects and introduced herself. She provided 
instructions to the participants regarding the training 
procedure. Participants were asked to hold each of the 40 
objects provided to them and train the robot, verbally 
naming (labeling) each object (see supplemental video). The 
participant then went through a practice session to 
familiarize themselves with the interactions with Octavia 
and the training procedure. Throughout the interaction, the 
participant initiated and ended the data collection procedure 
(i.e., the participant was able to control how much time was 
spent on each object). At the end of the experiment, a 
debriefing session provided the details and overall objective 
of the study. 

3.4. Experimental Design 

The primary goal of this study is to investigate how 
effectively a participant who was given embodied 
instructions, trains a robot when compared to a naïve 
participant who trains intuitively. We designed and 
conducted a between-group experiment where the 
participants are divided into two groups- Embodied and 
Naive. 

For participants in the naïve condition, Octavia provided 
verbal directions on how she needs to be trained:   

‘You will pick up each object one at a time, tell me what it 
is, and show it to me.’   

For participants in the embodied condition, Octavia 
provided instructions using her body as an example on how 
she needs to be trained: 

‘You will pick up each object one at a time, tell me what it 
is, and show it to me in various orientations [robot raises a 
fist and rotates it to couple poses].’  

Participants were asked to select objects randomly from a 
bin that had a variety of objects (described below).  Apart 
from the instructions, all participants underwent identical 
experimental procedures.  Note that the differences in 
instructions were quite similar in wording and neither 
instruction set was emphasized. This was a between-subjects 
manipulation.   

3.5 Data Collection.  

Training data was simultaneously collected using a Kinect 
V2, GOPro mounted directly below Kinect and a Sony 
DCR-VX2100 HD Camera. The HD camera recorded the 
video data of the interaction between the subject and the 
robot during the entire duration of the training session.  

Since one of the end goals of this project is to teach the 
robot to recognize objects on tabletops in an indoor 

environment, a testing dataset was created using a turntable 
at the end of all the training sessions. Each of the 40 objects 
was placed on a turntable and images were captured every 5 
degrees using the Kinect V2. The objects were then isolated 
in the images by cropping manually. 

3.6 Real-time Segmentation   

In this study, we developed an automatic real-time object 
segmentation framework, which is an improved approach 
from prior studies employing manual object segmentation 
[22, 21]. The 3D data from the Kinect sensor was used for 
segmentation of the object using a series of steps to extract 
the object candidate of interest from the background. A 
combination of depth and color based method was used for 
segmentation and isolating the object from the background. 
First, the depth data from the Kinect sensor was used to 
detect the closest point to the sensor (closest-point criteria), 
which either should correspond to the subject’s hand or the 
training object. A preliminary Region of Interest (ROI) of 
600X600 was defined centering this point. Since in this 
study, the main source of occlusion was predicted to be the 
participant’s hand, the skin color areas in the ROI were 
detected and eliminated. This was achieved by the histogram 
back projection method using the skin color on the facial 
region that was detected by Viola-Jones Haar feature-based 
cascade classifiers [25]. Further, pixels that had depth value 
greater than 100 were eliminated. The largest contour was 
then obtained and a bounding box drawn to isolate the object 
and the images were then saved. Real-time segmented 
images were obtained at approximately 14 images per 
second using an Intel NUC6i7KYK. 

3.7. Data Analysis  

Analysis was primarily performed on a subset of the data 
that was created after visual manual inspection of the 
segmented images where the images with unacceptable 
segmentation results were removed. If the object in the 
image was occluded (typically by the hand) or out of the 
frame, the image was excluded; all other images were 
included in for analysis. Analysis was also conducted on the 
original dataset to determine the difference in the 
recognition results with and without the bias introduced by 
imperfect segmentation. This original dataset contained all 
segmented images except that of one participant with an 
incomplete dataset due to a hardware malfunction. All 
images were manually labeled in post-processing to account 
for the language variability between participants.   

Two datasets were created for testing / evaluation. The 
turntable dataset  had a controlled range of poses for each 
object and provides a standard testing set that can be used 
for each participant’s model.  The individual-based dataset 
used a leave-out-one-subject approach where each person’s 
fine-tuned model was tested on training data from the 
remaining subjects. The classification accuracy was 
computed as the ratio of the total number of images correctly 
recognized to the total number of images used in testing.  

The individual based dataset allowed us to examine how 
well a single individual’s training mapped to other 
participant’s data.  Note that the individual-based dataset is 
especially difficult because of both individual variability 
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(e.g., some participants spent longer or shorter on each 
object) as well as condition differences (e.g., participants in 
the naïve condition may have emphasized the canonical 
form of the object more than participants in the embodied 
condition).   

The AlexNet model was fine-tuned for each participant. 
Each fine-tuned model was then used to classify images in 
both testing datasets. The statistical significance of the 
results was computed using the Welch two sample t-test. 

IV. RESULTS   

A. Segmentation Results 

For most participants, the segmentation approach was 
successful in isolating the objects and produced good 
segmentation results (Fig. 3). Best performance was 
achieved for spherical objects such as apple, ball and orange. 
In these cases, the regions of interests (the object) were fully 
detected and occupied a large portion of the cropped image. 
However, the segmentation results were not always ideal for 
smaller objects such as the combination lock, and skin-
colored objects such as wooden spoon, measuring cup etc. In 
addition, the skin tone of the participants also had an effect 
on accurate segmentation results of these skin-colored  

 

 

objects. In both these cases, the vision system detected 
incomplete or partial interest regions due to imperfect 
segmentation.  In certain cases, the sensor did not detect the 
object or the hand as the closest points (closest- point 
criteria) leading to imperfect segmentation. These failures 
highlight the difficulties of purely automatic object training 
and recognition by non-experts. 

These images with imperfect segmentations were 
eliminated in the hand-tuned dataset. It was observed that 
the majority of excluded images had segmentation failures 
due to the closest point criteria or presence of skin-color 
objects. Dataset of five participants (Embodied - 4, Naive - 
1) were removed completely since they had more than 20% 
images with imperfect segmentations. In the remaining 35 
participants Embodied-16, Naive – 19) the amount of images 
removed ranged from 0.01%-16.3 %. 

B. Object Recognition Result 

AlexNet was fine-tuned individually for each of the 

participants. The number of training images ranged from 752 

to 15586 images per participant with a total of 164952 

images from 35 participants. 

The fine-tuned models were first tested on the turntable 

dataset (Figure 4). This dataset consisted of 2890 images 

with an average of 72 images per object. Models of 

participants in the Embodied condition (μ = 78.1 %, σ  = 7.7 

%) were more accurate than the models of participants in the 

Naïve condition (μ = 62.6 %, σ  = 13.1 %), t(29.7) = 4.3, p < 

0.01. Our findings were consistent with the hypothesis that 

naïve instructions are likely to be insufficient to meet system 

needs and lead to less robust models. 

 

Figure 4: Classification results for the turntable dataset. The 

error bars show the 95% confidence interval (CI). 

                
 Next, the fine-tuned models were tested on the individual 

dataset (Figure 5). Models of participants in the Embodied 

condition (μ = 82.2 %, σ  = 3.7 %) were more accurate than 

the models of participants in the Naïve condition (μ = 66.1 

%, σ  = 11.3 %), t(22.5) = 5.7, p < 0.01. Our findings were 

consistent with the hypothesis that naïve instructions are 

likely to be insufficient to meet system needs and would 

produce less robust models. 

We also examined performance on the original dataset (no 

hand removal of images). Models of participants in the 

Embodied condition (μ = 73.6 %, σ  = 4.3 %) were more 

accurate than the models of participants in the Naïve 

condition (μ = 58.8 %, σ  = 10.3 %), t(25.6) = 5.9, p < 0.01. 

Hence, while hand coding the data to remove images with 

imperfect segmentation was helpful in improving the 

accuracy, results from both datasets showed that embodied 

instruction resulted in better models than naïve instruction.  

 

Figure 5: Classification results for the individual dataset. 

The error bars show the 95% confidence interval (CI). 

               

Figure 3: Examples of segmented images obtained from the 

human subject study. 
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V. DISCUSSION 

In this paper, we investigate the impact of embodied 

training on object recognition through a human subject study 

conducted using a humanoid robot. The participants were 

broadly classified into two groups: Embodied and Naïve. 

Each participant was either given embodied examples or 

verbal instructions for teaching novel objects to the robot. 

The collected image data was then used for training a 

Convolution Neural Networks. An integrated software and 

hardware framework was created for data acquisition and 

real-time object segmentation, which represents system 

advancement over previous studies.  The results of the study 

indicate that embodied training has a significant impact on 

the classification performance of the learning algorithm.  

Generally, the network trained by participants with 

embodied instructions outperformed a system trained by 

naïve participants.  

Our results clearly show that embodied training is an 

excellent way to provide instructions to teachers during a 

training scenario to improve vision performance of robotic 

systems.  There are several possible reasons why the models 

created by data from participants in the embodied training 

condition performed better than models created by data from 

participants in the naïve condition.  Our primary hypothesis 

is that participants who were given naive instructions 

showed the canonical view of objects, while participants 

who received embodied training showed a variety of 

different viewpoints, including the canonical one.  Future 

work will examine the type of training that actually occurred 

and how it impacted network learning as well as improve the 

object segmentation algorithm, and analyze the language 

variability of object labeling to automate the labeling 

process. 

The study also shows that the fine-tuning methodology 

is a strong candidate for object recognition in a robotic 

domain. The standard AlexNet model combined with real-

time segmentation provided impressive classification 

accuracy in the initial results. There is great potential for 

improving the results by various data augmentation 

techniques and improving and customizing the deep learning 

models. 

Our findings confirm the fact that the current learning 

algorithms are reliant on the detailed availability of 

information about the objects being learned. As a result, the 

specificity of instructions has a large influence in the 

learning performance. Thus, the use of the latest machine 

learning algorithms combined with good embodied training 

provides an efficient object recognition approach in a robotic 

domain in real-world environments. 
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