
HYPOTHESIS AND THEORY
published: 31 March 2022

doi: 10.3389/fnsys.2022.800280

Frontiers in Systems Neuroscience | www.frontiersin.org 1 March 2022 | Volume 16 | Article 800280

Edited by:

Yan Mark Yufik,

Virtual Structures Research Inc.,

United States

Reviewed by:

Peter Sutor,

University of Maryland, College Park,

United States

James Llinas,

University at Buffalo, United States

*Correspondence:

Leslie M. Blaha

leslie.blaha@us.af.mil

Received: 22 October 2021

Accepted: 17 January 2022

Published: 31 March 2022

Citation:

Blaha LM, Abrams M, Bibyk SA,

Bonial C, Hartzler BM, Hsu CD,

Khemlani S, King J, St. Amant R,

Trafton JG and Wong R (2022)

Understanding Is a Process.

Front. Syst. Neurosci. 16:800280.

doi: 10.3389/fnsys.2022.800280

Understanding Is a Process

Leslie M. Blaha 1*, Mitchell Abrams 2, Sarah A. Bibyk 1, Claire Bonial 3, Beth M. Hartzler 4,

Christopher D. Hsu 3, Sangeet Khemlani 5, Jayde King 1, Robert St. Amant 3,

J. Gregory Trafton 5 and Rachel Wong 4

1 711th Human Performance Wing, U.S. Air Force Research Laboratory, Wright-Patterson Air Force Base, OH, United States,
2 Tufts University, Medford, MA, United States, 3U.S. Army Combat Capabilities Development Command, Army Research

Laboratory, Adelphi, MD, United States, 4 Link Training & Simulation, CAE USA, Arlington, TX, United States, 5Navy Center

for Applied Research in AI, U.S. Naval Research Laboratory, Washington, DC, United States

How do we gauge understanding? Tests of understanding, such as Turing’s imitation

game, are numerous; yet, attempts to achieve a state of understanding are not

satisfactory assessments. Intelligent agents designed to pass one test of understanding

often fall short of others. Rather than approaching understanding as a system state, in this

paper, we argue that understanding is a process that changes over time and experience.

The only window into the process is through the lens of natural language. Usefully,

failures of understanding reveal breakdowns in the process. We propose a set of natural

language-based probes that can be used to map the degree of understanding a human

or intelligent system has achieved through combinations of successes and failures.

Keywords: mutual understanding, common ground, behavioral measurement, human-machine teaming, human-
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1. INTRODUCTION

Few would argue with the claim that intelligent behavior in humans and machines depends
on understanding. Yet, criteria for understanding are elusive. This is because, as this special
issue motivates, we know little conclusively about the mechanisms, representations, learning and
reasoning that comprise and demonstrate understanding; an ongoing challenge for researchers is
to differentiate the unique character of understanding from other cognitive behaviors. A critical
step toward establishing a unifying theoretical framework for understanding in both humans and
machines is to establish common measures and metrics that elucidate the degree of understanding
achieved within candidate frameworks or intelligent systems in a consistent way.

One component of this is clearly articulating what researchers should accept as evidence for
understanding, including what constitutes the central tests of a system’s ability to understand
its input. Hannon (2021) identified a plausible set of criteria for characterizing understanding:
understanding is a cognitive achievement, not gained simply by receiving information;
understanding comes in degrees; understanding manifests itself through abilities or know-how,
especially being able to “grasp” connections. There remains wide disagreement about these
basics and even about more fundamental questions, such as whether understanding is a form of
knowledge (and thus also subject to questions about the nature of knowledge). But this suggests
a single system may exhibit multiple levels of understanding, and these will change over time.
Accordingly, the evidence and critical tests should accommodate multiple degrees and adapt over
time. Instead of treating understanding as an outcome, it may be more fruitful to consider the
question: how does understanding support intelligent behaviors?
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In this paper, we argue that understanding is a process, not
an outcome. It depends on learning, interpreting, generalizing,
and acting upon information. No single test is sufficient for
demonstrating that one agent understands another. Indeed,
understanding is not a singular type of knowledge (see also,
Hannon, 2021). Assessing understanding requires probing the
extent of understanding; that is, we need to execute a series of
appropriately designed tests that probe the manner and extent to
which information has been learned, interpreted, generalized and
acted upon. The ability to probe, and therefore demonstrate any
degree of, understanding requires natural language.

This paper is organized as follows. Section 1.1 reviews
approaches to characterizing understanding from cognitive
science and education. Many efforts in these areas attempted
to establish comprehensive operational definitions and task-
based benchmarks. We identify how agents falling short of
desired task performance targets prompts a natural process
of probing. Section 2 reviews the closely associated history
of major challenge tests for computational intelligence, which
place tests of understanding in natural language conversation
contexts. Section 3 examines how the challenge of achieving
natural language processing in machines has prompted different
benchmarks across many levels of meaning representation;
both successes and failures at each level illustrate the extent
of understanding enabled by each level. Section 4.1 considers
the constructive nature of conversation and how humans
create mutual understanding through common ground. Despite
advances in non-verbal cues for natural interactions (Section 4.2),
common ground is a hard challenge for machines, particularly
robots. If understanding is a process, then the current inability
for machines to understand humans may stem from the inability
of machines to engage in the language-dependent process of
understanding. Section 5 reviews mental models and theory of
mind methods for verbally eliciting knowledge and reasoning
from humans. Section 6 reviews recent research on explainable
artificial intelligence (XAI), illustrating how machines can make
transparent their underlying operations. We synthesize these
various approaches from cognitive science, education, natural
language understanding, linguistics, verbal protocols, and XAI,
to outline a method to craft probes of understanding to examine
the understanding process. We argue that by establishing such
probes in the context of interest, we identify what constitutes
evidence for understanding. Thus, we can align the results of
probing with the degree to which the desired understanding in
humans and machines is achieved and systematically compare
hypotheses about the mechanisms underpinning understanding.

1.1. Attempts to Define Understanding
Several broad definitions have been proposed in the cognitive
sciences with a goal of establishing a definition that applies to
both human and artificial intelligence (AI). For example, Hough
and Gluck (2019) recently defined understanding as “The
acquisition, organization, and appropriate use of knowledge to
produce a response directed toward a goal, when that action
is taken with awareness of its perceived purpose” (Hough
and Gluck, 2019, p. 23). This is perhaps an updated, more
general version of Simon’s early definitions developed in his

efforts to outline the criteria for software programs capable
of understanding. Simon emphasized that understanding is “a
relation among a system, one or more bodies of knowledge,
and a set of tasks the system is expected to perform” (Simon,
1977, p. 1070). Simon’s incorporation of the task or goal for
an intelligent system is an extension of Moore and Newell’s
definition of understanding as a relationship between a system
and its appropriate use of knowledge (Moore and Newell, 1974).

Consistently, these definitions emphasize that understanding
entails the use of knowledge in pursuit of a task-related goal.
Subsequently, the evidence for understanding is then considered
to be the ability to successfully perform a target task.

This definition is measurable and achievable within narrowly
scoped problems. Narrowly scoped problems include single
problem solving tasks (e.g., Towers of Hanoi, demonstrated
by the UNDERSTAND program; Simon and Hayes, 1976), or
simple information recall in question and answer format (e.g.,
Siri or similar modern natural-language-based internet search
assistants). Throughout the history of AI research, we can find
many examples where accomplishing task-related goals has been
used to demonstrate success in achieving machine understanding
(usually with parallel human demonstrations or baselines).

There is an interesting context in which these early
understanding definitions were established. Parallel to the
emergence of computing and the computing analogies for
cognition in the 1950s and 60s, the first efforts to standardize
educational assessment were being published. The first of these,
Taxonomy of Educational Objectives (Bloom et al., 1956), avoided
the use of the term understanding; instead, it emphasized
knowledge, comprehension, application, analysis, synthesis, and
evaluation as increasingly complex objectives for someone to
acquire, interpret, and use information and skills. Revisions and
alternatives to this taxonomy replaced use of comprehension
with understanding, making it the second level of educational
objectives. In the revised Taxonomy of Educational Objectives,
understanding is currently defined as: “Determining the meaning
of instructional messages, including oral, written, and graphic
communication” (Krathwohl, 2002, p. 215). This is quite a
contrast to the task-oriented definitions in the cognitive sciences.
Instead of framing understanding as the successful use of
knowledge, understanding framed as comprehension emphasizes
abilities like interpretation and explanation—abilities that are
heavily dependent on natural language communication1.

However, both the educational taxonomic framing and the
task-oriented goal framing of understanding suffer the same
pitfall: both frame assessment as pass or fail. An individual
is able to pass the test for that level of understanding in the
taxonomy or not; an individual can correctly complete the
task, or not. Consequently, this pushes the whole construct of
understanding to be conceptualized as an intelligent agent’s state:
it can understand, or it cannot.

A problem with this perspective is that one can pass a
test without actually possessing the intended knowledge or

1The full list of understanding-related competencies are interpreting,

exemplifying, classifying, summarizing, inferring, comparing,

explaining (Krathwohl, 2002).
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skill, giving an appearance of understanding. When apparent
understanding is probed or pushed, perhaps tested in a slightly
different context or manner from which the information was
learned, the system fails. We see this fragility of performance
often for deep neural network classifiers, as evidenced by
the discovery of adversarial attacks. In some attacks, very
small amounts of noise added to an image can drastically
change the confidence of the classifier and switch image class
labels (Goodfellow et al., 2018). Very minor changes to the
inputs cause sharp increases in classifier errors, indicating that
the classifier only had a fragile depth to its representation
of the relationship between images and their conceptual-level
class assignments. This falls far short of the understanding that
developers intended such systems to have.

A danger in chasing the passing of a single test for
understanding is that the definition of that test and what it
takes to pass become moving targets. Researchers may never
agree on a single benchmark against which to measure all claims
about mechanisms of understanding. Indeed, Simon (1977) is
a microcosm of the dilemma. In a single paper, he lays out at
least three full definitions and seven varieties of understanding,
because computer programs built to demonstrate sufficient
ability for one definition were not sufficient to demonstrate
another (see Bobrow and Collins, 1975, for similar examples).

To move our assessments of understanding forward,
researchers need to change their perspectives on understanding:
namely that understanding is a series of behaviors, not a
single outcome.

1.2. The Process of Understanding
We propose that understanding should be conceptualized as
a process. Understanding is an ongoing cognitive activity of
acquiring, integrating and expressing knowledge according to
the task or situation at hand. The process of understanding
can amount to an individual’s internal reflection on their own
knowledge or abilities to accomplish a self-motivated goal;
the process by which multiple individuals learn about and
communicate with each other while working as a team; and the
process of accomplishing team or individual goals. Engaging in
the process allows agents to understand themselves, other agents,
and external systems or situations. Understanding as a process
means that different degrees of understanding may exist in a
system, particularly as the tasks or information to be understood
are increasingly complex.

Failures of understanding can illustrate breakdowns in the
process of understanding. They do this by spotlighting when
understanding has not completely enabled success. To determine
why an agent failed to understand, failures are usually probed.
That is, we find ways to ask why and how thought processes
were correct and under what conditions or at what point in
reasoning they were not. For example, in educational settings,
if a student answers a question incorrectly, they are often asked
to explain how they got to the wrong answer (or even to “show
their work” to provide teachers with the same information).
Cognitive scientists use confusion matrices or patterns of errors
to investigate failures of task performance. Both groups try to
identify the nature or source of the error, and then try to move

toward a state of correcting the error. Hence, probing the failures
can result in better understanding. Combined with successes,
failures help to map the boundaries or depths of what is and is
not understood by an intelligent agent.

2. APPROACH: PROBING FAILURES OF

UNDERSTANDING

Assessing understanding as a process requires a series of tests that
probe a system’s successes and failures in different dimensions
of understanding. Within AI and Natural Language Processing
(NLP), there is a tradition of creating evaluation benchmarks
and “challenge” test sets that establish measuring posts of how a
systemmight compare to an ideal, or human-like ability. Perhaps
the most well-known of these tests is the “Turing test,” proposed
by Alan Turing in 1950 to address the question, “Can machines
think?” (Turing, 1950). In part due to the difficulties of defining
thinking, Turing proposed an alternate formulation to probe
whether or not machines can exhibit an observable behavior
requiring thinking, namely a machine’s convincing participation
in “the imitation game.” In this game, there is a machine, a
human participant, and an “interrogator” asking questions of
the two parties and viewing written answers to the questions.
The interrogator asks questions to ascertain which party is the
machine and which is the human. The machine would succeed in
this test if it were able to convince the interrogator that it was the
human. The Turing test therefore presupposes that the ability to
participate in natural conversation evidences intelligent behavior.

Turing hypothesized that a machine would be able to pass
his test by the year 2000, and indeed, the Turing test moved
from thought experiment to implementation within the Loebner
competition starting in 1991—a more limited version of the
test in which the interrogator has only 5 minutes to make
a determination, and there is a limited set of topics. The
first system to pass this limited Turing test selected the topic
“whimsical conversation.” While fluent, one must question
whether such whimsical conversation actually evidences any
intelligence (Shieber, 1994). There is enduring fascination with
the Turing test that has inspired both a string of philosophical
criticisms of it as a litmus test for intelligence as well as
alternative tests.

Linguist and philosopher John Searle continued to probe the
question “Can computers think?” (Searle, 1984). He concluded
that no digital computer can think or “understand” language in
particular after posing the “Chinese room experiment.” In the
Chinese room experiment, he drew a parallel between a person
locked in a room manipulating Chinese symbols according
to ordering rules (i.e., syntax), but without any knowledge
of the actual meaning of these symbols (i.e., semantics), and
a computer question-answering system manipulating input
symbols designated as questions and returning associated
symbols as answers. He concluded that a person in this situation
does not “understand” Chinese, and that digital computers are
always in the Chinese room—while they can manipulate symbols
in such a way as to appear to understand language and even
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answer questions correctly, they have access only to symbols and
syntax, but never the deeper semantics behind those symbols.

Thus, we ask whether or not such evaluations can still have
value in their diagnostic ability to pinpoint successes and failures
of understanding, where the illusion is broken and we can no
longer say that the system functions in practice, regardless of why
and how. A system that understands should be able to articulate
its comprehension and demonstrate its understanding in one
or more ways that humans can assess, similar to the ways we
have humans demonstrate their comprehension. As a practical
matter, this often demands that the system produce responses
using natural language. Indeed, we make a strong commitment
to the need for processing and responding to natural language: it
is only through natural language probes that artificial agents can
establish their understanding. In the absence of natural language
assessments, it may be impossible to establish whether systems
are merely symbol-manipulators.

For that reason, we focus on natural language processing as
a gateway to understanding in humans and machines. In the
following section, we work through attempted assessments of
“understanding” in natural language communication, and begin
to delineate how we might probe failures in that area to begin to
establish benchmarks and metrics for evaluating understanding
in a broad variety of systems and tasks.

3. NATURAL LANGUAGE

UNDERSTANDING

William James writes, “any number of impressions, from any
number of sensory sources, falling simultaneously on a mind
WHICH HAS NOT YET EXPERIENCED THEM SEPARATELY,
will fuse into a single undivided object for that mind...The baby,
assailed by eyes, ears, nose, skin, and entrails at once, feels it all
as one great blooming, buzzing confusion” (James, 1890, p. 488).
Although it has since become debatable how true this is of the
human infant brain, this state of blooming buzzing confusion is
certainly true for the machine. Similarly, De Saussure writes:

“Psychologically our thought—apart from its expression in

words—is only a shapeless and indistinct mass. Philosophers

and linguists have always agreed in recognizing that without

the help of signs we would be unable to make a clear-cut,

consistent distinction between two ideas. Without language,

thought is a vague, uncharted nebula. There are no pre-existing

ideas, and nothing is distinct before the appearance of language”

(De Saussure, 2011, p. 111).

Again, setting aside debates as to how true this is of human
thought, machines must learn how to differentiate sensory input
into meaningful bundles—separate categories of the things and
events of the world. Furthermore, at least in the domain of the
machine’s function, they must learn to do so in a way that maps
reasonably well to a human’s organization of the same sensory
input, such that both human andmachine can act upon the world
in any collaborative task. Because natural language provides a set
of labels for many of the discrete categories of the world that
humans are familiar with, to come to any kind of understanding

between human and machine, the machine must be able to map
its own categories and labels to natural language. This amounts
to a shared symbolic space between humans and machines,
which we propose is critical for establishing understanding and
certainly for probing and interrogating a system’s level and
failures of understanding. It is worth emphasizing that while any
shared symbolic space could accomplish this goal, we specifically
argue that natural language is the best choice for serving this
purpose as the symbolic language most familiar to humans.
By “natural language” we are referring to any modality of
natural language, in contrast to an artificial, controlled language2.
Given the fundamental nature of this shared symbolic space to
understanding, we discuss in relatively great detail the current
landscape of natural language understanding and its evaluation.

3.1. Introduction to Natural Language

Understanding
One area of Natural Language Processing (NLP) is referred to as
Natural Language Understanding (NLU), a term introduced by
Woods (1973), who proposed using English as a query language
for a lunar sciences computational system. The motivation
for using English as a query language remains relevant today
to a variety of applications where NLU components are
included. Natural language offers an ease of communication
with computational systems, given that people already know,
speak, and, as argued by Woods, think, in a natural language.
NLU is a higher-order text processing goal, necessarily built
upon other NLP components. McCarthy (1990), first published
in 1976, proposed what he thought would be the necessary
sub-components for achieving NLU:

1. A “parser” that turns English into ANL [Artificial Natural
Language].

2. An “understander” that constructs the “facts” from a text in
the ANL.

3. Expression of the “general information” about the world that
could allow getting the answers to the questions by formal
reasoning from the “facts” and the “general information.”

• The “general information” would also contain non-
sentence data structures and procedures, but the sentences
would tell what goals can be achieved by running the
procedures. In this way, we would get the best of the
sentential and procedural representations of knowledge.

4. A “problem solver” that could answer the above questions on
the basis of the “facts.”

Indeed, many NLU approaches introduce a pipeline somewhat
like this, including an intermediate, computer-readable semantic
representation and knowledge bases that can be used to compare
the represented proposition against some real-world knowledge.
It is this kind of approach that is also reflected in the discussion

2A controlled language could certainly be used to achieve and interrogate

understanding in a limited domain, but this places the cognitive burden

of communication on the human and precludes efficient generalization to

new domains, both of which can be problematic in dynamic and dangerous

communication settings.
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of semantic processing requirements by Jurafsky and Martin
(2009), who indicated that basic requirements include: the
truth of the proposition, unambiguous representations drawing
upon a specific sense inventory for handling polysemous words
and different contexts, as well as the ability to complete
disambiguation tasks on the level of both the word and sentence.

3.2. Evaluating Natural Language

Understanding
Because the broader goal of NLU is based upon the composition
of a variety of lower-level NLP tasks, the question of whether or
not a system can successfully “understand” natural language has
largely only been addressed first with respect to the particular
NLP task at hand (e.g., question-answering), and by evaluating
the success of the individual lower-level tasks. Within NLP, these
lower-level tasks are most commonly evaluated in the following
way:

1. Establish a test set: this is a set of test items, which must
be novel items unseen by the system in any training phase.
The ground truth result is known, generally by humans
establishing this through “annotation” or labeling of text
with a set of relevant labels and subsequently comparing
annotations for discrepancies to establish an agreed upon
“gold standard.”

2. Measure the system’s ability to reproduce the “gold standard”:
the most common evaluation metric for this in NLP is an
F-score, also referred to as F-measure or F1, which is the
harmonic mean of Precision (the number of true positive
results divided by the number of all identified positive results)
and Recall (the number of true positive results divided by
the number of all samples that should have been identified as
positive).

For a particular task, accepted baseline and state-of-the-art
performance levels are often established through shared tasks,
where somewhat different systems with different aims are
evaluated on a common test set or suite of test sets. Thus,
this is similar to the kind of “challenge” approach, described in
Section 2, first established in the Turing test. A good example
of a contemporary evaluation suite is The General Language
Understanding Evaluation (GLUE) benchmark (Wang et al.,
2018), which is a collection of resources for both training and
evaluation of various types of NLU tasks. It is intended to be
agnostic to the system type. The evaluation suite includes tasks
related to sentiment, paraphrase, natural language inference, co-
reference, as well as question-answering (many of the challenges
present in this evaluation suite parallel the types of probes
described in Section 6). Again, system performance on these
tasks is often contingent upon the performance of upstream,
basic NLP components such as word sense disambiguation and
syntactic parsing. In this sense, evaluating and probing the
failures of understanding within NLP can be broken down into
evaluations of the system’s ability to recognize and interpret units
of “meaning” at various levels of language, described next.

3.3. Levels of Language Meaning and

Understanding
The assumption that a broader NLU task presupposes smaller
subtasks reflects assumptions about how and where meaning is
encoded in natural language.

3.3.1. Understanding Word Meaning
There is a linguistic tradition that assumes that meaning is
compositional—the meaning of a sentence or phrase is made
up of the meanings of its individual parts, or word meanings
(e.g., Chomsky, 1980). Operating under this assumption, Word
Sense Disambiguation (WSD) is a key task for NLU, wherein,
given an electronic lexicon or dictionary of word senses, a sense
must be assigned to a word in context. For example, the sense
of play in “She plays the violin” is to perform on an instrument,
while “She plays soccer” is to participate in a game. One of the
primary challenges of WSD is the selection of an appropriate
lexicon, as lexicons can vary greatly in their level of coverage as
well as their sense “granularity”—or the number of distinct senses
associated with a word. WordNet (Fellbaum, 1998) is probably
the most well-known and widely used electronic database of
English words with ontological structure. It represents one of the
first large-scale efforts to add such structure to a dictionary-like
resource. The organization of WordNet was, in part, inspired
by work in psycholinguistics investigating how and what type
of information is stored in the human mental lexicon (Miller,
1995). WordNet is divided firstly into syntactic categories—
nouns, verbs, adjectives and adverbs—and secondly by semantic
relations, including synonymy, antonymy, hyponymy (e.g., tree
is a hypernym of maple), and meronymy (part-whole relations).
These relations make up a complex network of associations that
is both useful for computational linguistics and NLP, and also
informative in situating a word’s meaning with respect to others.

Although the original English WordNet has been so valuable
so as to inspire WordNets in a variety of other languages (e.g.,
Vossen, 1997), the practical utility of WordNet for WSD tasks
has been questioned, as formal evaluations have shown that
WordNet’s sense inventory is so fine-grained that it is difficult for
both humans and systems to tell the difference between senses
and apply the appropriate sense label in context. As a response
to this, the OntoNotes sense groupings were developed (Pradhan
et al., 2007). These can be thought of as a more coarse-grained
view of WordNet senses, as these sense groupings were based
on WordNet senses that were successively merged into more
coarse-grained senses based on the results of measuring inter-
annotator agreement (IAA) in tagging of the senses (Duffield
et al., 2007). Essentially, where two annotators were consistently
able to distinguish between two senses, the distinction was
kept. Where annotators were not able to consistently distinguish
between two senses, the senses were conflated into one sense.
In this way, human IAA establishes the ceiling performance on
the task. If humans cannot reliably agree upon the distinctions
of an annotation schema, we certainly cannot expect a machine
to be able to reproduce those distinctions of manually annotated
training and/or test data reliably. Indeed, subsequent systems
trained and tested on OntoNotes sense distinctions are able to
achieve much better performance on the WSD task, as measured
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by F-scores in comparison to a human-annotated gold standard
(e.g., Zhong et al., 2008). This has led to OntoNotes becoming a
benchmark dataset for training and testing WSD systems.

3.3.2. Understanding Sentence Meaning
Recognizing the meanings of all of the individual words in a
sentence, however, does not allow a system to understand the
overall meaning of a sentence. We must also enable a system’s
understanding of how meaning is composed, or the semantic
relationships between the words. Although there are a variety
of established theories as to how to determine and model the
semantic relations of a sentence, one dominant assumption
widely made in NLP can be summarized Jackendoff’s Projection
Principle (Jackendoff, 1990), which states that the basic scene
denoted by a sentence (i.e., participant roles) derives from
the argument structure of the head verb. Verbs structure the
relationships between other words of the sentence by designating
the “semantic role” that the word plays with respect to the main
verb of the sentence. Semantic roles, also called “thematic roles,”
refer to general classes of participants in a sentence and attempt
to define the relation of the participant to the event (which is
often expressed by the main verb). For example, in the sentence
Fred gave Maria a book, Fred is the agent of the action, the book
is the gift, and Maria the recipient. The nature of participation
in an event for a particular word is often the same, regardless
of the syntactic format of the sentence. For example, in Fred
gave a book to Maria, Maria is still the recipient, even though
Maria is syntactically now an object of a preposition instead of a
direct object.

Identifying the semantic roles of the participants is part of
the more general task of understanding the semantics of the
event, which has certain semantic components regardless of the
specific verb used. Whether a speaker talks of giving, handing,
or passing, there is always a transfer of an entity from the giver
to a recipient. Grouping verbs with similar semantics allows us
to refer to their shared semantic components and participant
types. To support a system’s ability to recognize and interpret
the semantics of a sentence in this way, a variety of resources
have been developed wherein human annotators attempt to apply
these theories of semantic roles and verb classes to large numbers
of English verbs. This annotated data can be used as training and
test data for automatic semantic role labeling (SRL), in which a
system automatically interprets an the who, what, where, when,
how of a particular event. SRL resources include the benchmark
PropBank (Palmer et al., 2005) and FrameNet (Fillmore et al.,
2002) verb lexicons and accompanying annotated corpora, which
have been reproduced in a variety of languages.

3.3.3. Understanding Constructional Meaning
NLP has made progress toward recognizing and understanding
the meanings of individual words and how those meanings
compose to form themeaning of the broader sentence they fall in.
Yet, understanding the meaning of a sentence can remain elusive,
because there are still other levels of meaning that come into
play for a human-like understanding of language. One aspect of
this is that, in practice, systems trained on resources that assume
the Projection Principle fail to understand sentences where the

semantics of participants does not stem from the semantics of the
head verb. For example, consider the sentences “She blinked the
snow off of her eyelashes,” and “We ate our way through New
York City.” While likely readily understandable to you as the
reader, such sentences can be confounding for systems that have
been trained to interpret sentence meaning through the lens of
the main verb, which is assumed to assign semantic roles to “the
snow” and “New York City”. This approach leads our systems
to expect and likely conclude that snow is something that can
be blinked, and a path through New York City is something
that can be ingested. Such creative language usages are pushed
aside in many linguistic theories as peripheral phenomena of
figurative language, unimportant for the broader understanding
of language (e.g., Chomsky, 1995). However, the increasing
availability of computer-readable corpora has demonstrated the
prevalence of these and related phenomena, where the meaning
of a sentence is somehow above and beyond the individual
word level. In contrast to the Projection Principle, theories of
Construction Grammar (e.g., Fillmore, 1988; Goldberg, 1995;
Michaelis and Lambrecht, 1996) account for such phenomena.
We have begun to see the rise of computational resources (such as
the FrameNet “Constructicon”; Fillmore et al., 2012) supporting
the recognition and interpretation of “constructions,” such as the
caused-motion and way-manner constructions exemplified in the
“blink” and “eat” sentences put forth for consideration above.

3.3.4. Understanding Meaning in Conversational

Context and Dialogue
Again, even if we add to our system’s understanding an
interpretation of such constructional meaning beyond the
compositional meaning of words, we may be missing implicit
information that arises from the broader context of a sentence,
from real-world, experiential and cultural knowledge, or from
the combination of these factors. This is the broader context
involved in dialogue, where language is used in bi-directional
communication between speakers or interlocutors. If we would
like agents to both understand and potentially communicate
about the world around them as another human might,
communication via natural language dialogue is an appealing
candidate. There are significant bodies of research in dialogue
systems, which can in turn require computational semantic
representations of natural language that attempt to capture all of
the levels of meaning described earlier in this section, as well as
the recognition of “speech acts,” or what someone is attempting
to do with a particular utterance beyond its basic content.

Task-oriented spoken dialogue systems, the goal of which is
broadly to identify a user’s intents and then act upon them to
satisfy that intent, have been an active area of research since the
early 1990s. Broadly, the architecture of such systems includes
(i) automatic speech recognition (ASR) to recognize an utterance
in speech and convert this into text, (ii) an NLU component
to identify the user’s intent, and (iii) a dialogue manager to
interact with the user and achieve the intended task (Bangalore
et al., 2006). In the earliest of these systems, “understanding” was
reduced to the task of detecting a keyword in a user’s utterance
after the user was prompted with a limited set of permitted
options (Wilpon et al., 1990).
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Accordingly, the semantic representation within such systems
has, in the past, been predefined frames for particular subtasks
(e.g., flight inquiry), with slots to be filled (e.g., destination
city; Issar and Ward, 1993). In such approaches, the semantic
representation was crafted for a specific application, making
generalizability to new domains difficult if not impossible.
Current approaches still model NLU as a combination of intent
and dialogue act classification and slot tagging, but many have
begun to incorporate recurrent neural networks (RNNs) and
some multi-task learning for both NLU and dialogue state
tracking (Chen et al., 2016; Hakkani-Tür et al., 2016), the latter
of which allows the system to take advantage of information
from the dialogue context to achieve improved NLU. Substantial
challenges to these systems include working in domains with
intents that have a large number of possible values for each
slot and accommodation of out-of-vocabulary slot values (i.e.,
operating in a domain with a great deal of linguistic variability).
Thus, a primary challenge today, as in the past, is representing the
meaning of an utterance in a form that can exploit the constraints
of a particular domain but also remain portable across domains
and robust despite linguistic variability.

There is a long-standing tradition of research in semantic
representation within NLP, AI, theoretical linguistics, and
philosophy (see Schubert, 2015, for an overview). In this
body of research, there are a variety of options that could be
used within dialogue systems for NLU. However, for many of
these representations, there are no existing automatic “parsers”
(which automatically convert language into the representation),
limiting their feasibility for larger-scale implementation. Two
notable exceptions with a body of research on automatic parsing
are combinatory categorial grammar (CCG; Steedman and
Baldridge, 2011) and Abstract Meaning Representation (AMR;
Banarescu et al., 2013). CCG parsers have already been
incorporated in some current dialogue systems (Chai et al.,
2014). Although promising, CCG parses closely mirror the
input language, so systems making use of CCG parses still face
the challenge of a great deal of linguistic variability that can
be associated with a single intent. In contrast, AMR abstracts
from surface variation; thus, AMR may offer more regular,
consistent parses in comparison to CCG. AMR is currently being
investigated for use in dialogue systems onboard robots used for
search and navigation tasks (Bonial et al., 2019).

To engage in dialogue, an interlocutor must interpret the
meaning of a speaker’s utterance on at least two levels, as
first suggested by Austin (1962): (i) its propositional content,
and (ii) its illocutionary force, or the “speech act”—what the
speaker is trying to do with the utterance in the conversational
context. While the aforementioned semantic representations
have traditionally sought to represent propositional content,
speech act theory has sought to delineate and explicate the
relationship between an utterance and its effects on the mental
and interactional states of the conversational participants. Speech
acts have been used as part of the meaning representation of task-
oriented dialogue systems since the 1970s (Bruce, 1975; Cohen
and Perrault, 1979; Allen and Perrault, 1980). For a summary of
some of the earlier work in this area, see (Traum, 1999). Although
the refinement and extension of Austin’s (1962) hypothesized

speech acts by Searle (1969) remains a canonical work on this
topic, there have since been a number of widely used speech act
taxonomies that differ from or augment this work, including an
ISO standard (Bunt et al., 2012). Nevertheless, these taxonomies
often have to be fine-tuned to the domain of interest to be
fully useful.

The recognition that meaning representations for dialogue
systems need to be expanded to combine different levels
of interpretation is growing. For example, Bonial et al.
(2020) present Dialogue-AMR, which augments standard AMR,
representing the content of an utterance, with speech acts
representing illocutionary force. O’Gorman et al. (2018) present
a Multi-Sentence AMR corpus (MS-AMR) designed to capture
co-reference, implicit roles, and bridging relations. Though not
strictly speech acts, the interconnected approach to meaning
that this corpus annotates is directly relevant for deducing
illocutionary force in a dialogue context.

Although human-robot dialogue systems often leverage a
similar architecture to that of the spoken dialogue systems
described above, human-robot dialogue introduces the challenge
of physically situated dialogue and the necessity for symbol and
action grounding, which generally incorporate computer vision.
Few systems are tackling all of these challenges at this point (but
see Chai et al., 2017). Symbol grounding invokes an additional
layer of meaning, as systems must be able to connect a linguistic
symbol to a real-world object or event. This requires a challenging
combination of both perception of the current environment, as
well as real-world knowledge that guide expectations about how
to assign sensory input into a category of things grouped under a
particular word or label in a given language. In addition to symbol
grounding, human-robot dialogue, like human-human dialogue,
requires establishing and maintaining “common conversational
ground” of the speakers, described further in Section 4.1.

Ontologies have commonly been used for storing, organizing,
and deploying the real-world knowledge required for physically
situated dialogue systems (as well as other intelligent agents).
However, we note that mapping informal concepts into a formal
language is a difficult and persistent problem, one in which
relatively little progress has been seen. For an example, consider
the difficulty of establishing that a machine understands how a
box works (Davis, 2011). Even everyday physical concepts that
are part of ordinary human conversation, such as near, far, short,
friendly, trustworthy, and so forth, are difficult to formalize. A
consequence, in part, is that a number of different foundational
formalisms (upper ontologies) have been proposed: Basic Formal
Ontology (Arp et al., 2015), General Formal Ontology (Herre
et al., 2006), Cyc (Matuszek et al., 2006), and others. Despite
the challenges, research continues in this area as there are few
alternatives that offer any explainability. A research direction that
may hold promise is the combination of the value of linguistic
and ontological resources with the power of deep learning (e.g.,
Faruqui et al., 2015).

Overall, the technical landscape of NLU underscores the need
for evaluating understanding as a process in which failures
can arise at various stages. Probing the success of increasingly
complex language understanding tasks allows us to pinpoint and
address the limitations of a system’s understanding. Although
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NLP has established a good model for evaluating systems using
suites of benchmark, shared tasks, the evaluations of subtasks
within NLP have not been cohesively united to establish clear
and measurable evaluations of the most complex tasks that rely
on lower levels of understanding. For example, there is little
consensus on how to evaluate either “success” or understanding
for dialogue systems (see Deriu et al., 2021, for a survey on
this topic).

3.4. Generative Language Models
Many of the approaches to different aspects of NLU described
thus far have been either semi or fully supervised machine
learning, often drawing upon human-annotated training data
and possibly some rule-based operations. Recently, NLP has seen
the rise of generative language models (GLMs), which constitute
a powerful unsupervised approach to various NLP tasks. GLMs
produce likely next text based on a context of other text. This
process has a surprising number of useful applications, one of
which is answering questions about a text passage. This is an
application where one may posit that at least certain questions
would require understanding of the passage to answer sensibly.
One of the most dominant current GLMs is the “Generative Pre-
trained Transformer” or GPT. It is a deep neural network with the
transformer architecture, trained on a large general text corpus,
that generates text as output, given a text prompt.

In contrast with rule-based and/or ontologically-based efforts
to provide some knowledge of the meaning behind symbols,
recent advances in developing massive pre-trained language
models, such as GPT-3 (Brown et al., 2020), have demonstrated
successes on a variety of question-answering and inference
tasks. GPT-3 illustrates that computers can exploit and deploy
knowledge encoded in the text in such a way as to at least broaden
and deepen the illusion of understanding language. In part, this
success may be attributed to the fact that GPT-3 is trained on
huge amounts of text. Thus, whereas the past components that
we’ve looked at are trained on annotated data relating to one
or another level of meaning, the broader meaning of entire
documents may be implicitly encoded in the GPT-3’s training
data, giving it a relatively broad “understanding” of meaning in
the context of lots and lots of full documents, which can contain
a surprising amount of cultural and real-world knowledge.

Nonetheless, GPT-3 has been criticized as “understanding”
nothing—criticisms reminiscent of Searle’s Chinese Room.
Several recent works have set out to pinpoint and classify failures.
Drawing inspiration from challenge questions meant to test the
strengths and weaknesses of language models like GPT-3 in
particular, we suggest the following three dimensions as a starting
point for creating probes of a GLM’s understanding:

1. Knowledge Source: Is the knowledge needed to understand an
input contained in information explicitly given to the system,
or in the learned world knowledge implicit in the weights
acquired during training, or in linguistic knowledge that the
system has learned from training?

2. Knowledge Type: Is the knowledge needed to understand
an input about concrete entities in the world, about events
and timelines, or about the contents of the minds of

people? Is it about general classes and schemas, or about
specific things?

3. Reasoning Required: What reasoning abilities are required
to understand the input? Can it be answered with analogical,
deductive, or inductive logic? Does it require temporal
reasoning, reasoning about negation, or meta-reasoning about
the motivations of the interlocutor to fully understand?

A recent analysis of the successes and failures of GPT-3 on
a question-answering task, involving a carefully curated set
of challenge questions, demonstrates that GPT-3 is able to
successfully answer questions where the Knowledge Source is
explicitly given, and can even answer questions where the
knowledge type involves the contents of others’ minds and some
limited timeline information (Summers-Stay et al., 2021). On
the other hand, it is fairly clear that GPT-3 lacks the ability to
synthesize and reason about the content it has seen. In particular,
GPT-3 has been shown to be unable to perform very simple
mathematical operations, even when related to its text prompt,
such as using addition or subtraction to determine the age
of a person described in a text (Gwern, 2020; Summers-Stay
et al., 2021). We suggest that this demonstrates the utility of
such challenge sets in probing the failures of understanding and
delineating the general areas where a particular system may lack
adequate understanding for a particular application or task.

4. DEMONSTRATING AND MAINTAINING

SHARED UNDERSTANDING

We now shift from considering natural language understanding,
which can be thought of as a largely unidirectional process
by which a system interprets and acts upon incoming natural
language input, to considerations of how the current level of
understanding is demonstrated by both humans and machines,
and how ongoing shared understanding is maintained. This
can be thought of as a bi-directional, dynamic process that
may include the initial interpretation of an input, but also the
ongoing efforts to subsequently demonstrate that the initial
interpretation was or was not successful and then iteratively
re-establish that shared understanding is being achieved as
communication proceeds.

4.1. Conversation and Common Ground
There is longstanding documentation of the numerous behaviors
in which humans engage to cultivate understanding. This
includes behaviors designed to establish and maintain what is
referred to as the common ground (Clark and Wilkes-Gibbs,
1986; Stalnaker, 2002). Common ground is the set of shared
beliefs and knowledge that speakers and addressees use to
appropriately situate utterances. Information becomes part of
the common ground when speakers and addressees demonstrate
that they mutually accept both the meaning that the speaker
intended to convey and that the addressee has understood that
meaning. Such information is then said to be grounded (Clark
and Schaefer, 1987, 1989). The idea that mutual acceptance is
required for grounding is part of a larger claim that conversation
is the joint activity of the conversational participants, achieved
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through tightly coupled coordination rather than dissociable
actions (Clark andWilkes-Gibbs, 1986; Clark and Schaefer, 1989;
Clark, 1994).

The behaviors that qualify as good “demonstrations” of
mutual acceptance are complicated and varied. A behavior
that may suffice in one conversational context (e.g., small
talk) may be insufficient or inappropriate in another (e.g.,
defusing a bomb). Grounding behavior also varies as a function
of the communication medium (Clark and Brennan, 1991);
certain cues for grounding in face-to-face spoken conversation,
such as facial expressions or intonation, are unavailable for
use in text conversation, though conversational participants
can leverage other features of the text medium to ground
information (e.g., Potts, 2012; Mills, 2014). In all situations,
speakers and addressees must mutually establish an appropriate
grounding criterion by which to measure whether or not their
behaviors demonstrate a reasonable understanding for current
purposes (Clark and Wilkes-Gibbs, 1986; Clark, 1994). In some
sense, speakers and addressees do not work toward “true”
understanding in conversation, but rather toward the belief that
there is “sufficient” understanding.

So what are some of the ways in which speakers and
addressees contribute to the process of grounding? Speakers
often contribute to grounding by working to prevent potential
misunderstandings in the first place, such as through “self-
repair” of their own utterances; for example, “He called them
‘pants’ but he meant trousers, like he used the Australian–the
American word for trousers” where the incorrect “Australian”
is immediately corrected to “American” (Schegloff et al., 1977;
Clark, 1994). Speakers have been argued to prefer to repair
their own utterances, and furthermore initiate those repairs
themselves, rather than have their addressee indicate the need
for a repair or have the addressee attempt the repair (Schegloff
et al., 1977). When prevention of a production error is not
possible, speakers may instead warn of possible upcoming
understanding difficulties for their addressee through devices
such as filled pauses (e.g., “uh” or “um”) or other editing
terms (e.g., the use of “I mean” in an instance such as “We went
to the bank–I mean the store”; see Levelt, 1983; Clark, 1994).
Speakers cannot always form utterances perfectly, and thus may
reformulate their utterances on the fly to improve the likelihood
of understanding (Clark and Wilkes-Gibbs, 1986).

Addressees may contribute to grounding through something
as simple as continued attention or providing “continuers”
(also known as verbal back-channels, such as “mhhm” or
“yeah”), or through something as involved as providing an overt
indication of understanding through paraphrasing or repeating
verbatim what the speaker said (Clark and Schaefer, 1987, 1989).
Addressees may also initiate understanding repairs by requesting
clarification from the speaker in a form tailored to the nature
of their perceived non-understanding (Gonsior et al., 2010). It is
through this collaborative effort that conversational participants
achieve not only understanding but also the awareness of each
other’s mutual knowledge required for future conversation.

The legwork that speakers and addressees put intominimizing
their collaborative effort (even if these contributions sometimes
create greater individual effort) not only allow participants

to coordinate on their mutual beliefs, but also to develop
particular meanings and references as needed in the current
task. Such meanings may not extend beyond that task or to
new conversational participants (Clark and Wilkes-Gibbs, 1986;
Brennan and Clark, 1996). These conceptual pacts (Brennan
and Clark, 1996; Metzing and Brennan, 2003) and language
routines (Mills, 2014) present an enormous challenge for
human-machine understanding. Creating task-specific meanings
(grounded within the task context) is not just served by knowing
when and how to deploy collaborative conversational behaviors;
arguably such meanings cannot be created without this kind
of coordination and negotiation. It is unclear how this form
of language innovation and adaptation can be created within
human-machine teams until machines possess flexible grounding
capabilities, tailored to the medium of communication between
the team members.

The fact that human dialogue behaviors are designed to
compensate for understanding failures (and such behaviors
are arguably like “probing”) makes natural language dialogue
a fruitful area in which to consider how we might design
probes to assess the understanding of artificial systems. However,
objectively identifying and quantifying failures of understanding
in conversation still presents an enormous challenge. In the
absence of overt behavior from the conversational participants
themselves, detecting failures requires making assumptions
about the mental states of the conversational participants (see
Section 5). A distinction is sometimes made between failures
of understanding where an addressee is aware of the failure
(non-understanding) and failures where an addressee is not
immediately aware (misunderstanding, e.g., Hirst et al., 1994;
Weigand, 1999; Gonsior et al., 2010). In the case of non-
understanding, addressees take immediate steps to remedy
the failure, and therefore there is usually overt evidence
in the conversation demonstrating the failure. Clark and
Schaefer (1989), for example, identify at least four “states”
of understanding in which addressees may believe themselves
to be in, and which prompt different kinds of responses
to correct the associated failure. The identification and
quantification of non-understandings provide a path forward
for how we might develop machines that can exhibit similar
behaviors (see Gonsior et al., 2010, for one such example).
Misunderstandings, on the other hand, must be detected at
a later time either by the addressee, the original speaker, or
both to be corrected. There may not be overt evidence of
a failure at the time the failure occurs. Misunderstandings
are ultimately corrected under the assumption that dialogue
includes the process of “coming to an understanding,” not merely
having understanding (Weigand, 1999). Further, conversation
as a whole is still successful under the assumption that, while
at any given moment the conversational participants may
be misunderstanding each other, on average understanding is
achieved across the entirety of the conversation (Weigand,
1999). The implicit assumption of not only collaboration but
cooperation within conversation (Grice, 1975) allows humans to
progressively and jointly establish understanding. There is much
more to be learned about how speakers and addressees balance
tolerating some misunderstanding under the assumption that
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understanding is being achieved on average, with the need to
point out and correct misunderstandings as the conversation
progresses. Machines, too, will need to emulate this balance to
participate in conversation in a manner that would be perceived
as both natural and efficient to a human.

4.2. Perceived Understanding
In some areas of interaction research (e.g., human robot
interaction, human-agent interaction), most researchers do not
work explicitly on understanding. Most researchers presumably
think that understanding per se is too difficult a goal to reach
during even short-term interaction, so the focus becomes on how
to make the robot or agent appear as if it were understanding
an interaction partner, norms of a situation, or context. We
can label these sorts of approaches as perceived understanding.
Importantly, measures of perceived understanding are usually
quite straightforward: preferences and naturalness of the
interaction are common metrics.

Most of the work on perceived understanding focuses on
cues that the agent or robot can provide that signal that
the interaction is progressing. For example, there has been a
great deal of work that has shown that appropriate non-verbal
communication (eye-gaze, beat gestures, facial expressions) are
preferred and considered more natural than either random
non-verbal communication or interactions without those cues.
Trafton et al. (2008) showed that a robot system that was
able to track a conversation non-verbally by looking at the
speaker (based on a cognitive model of humans) was perceived
as more natural than a system that acted more distracted.
Other researchers have also shown that the amount, timing, and
location of a robot’s gaze can directly impact how much a person
wants to interact with the robot (Mutlu et al., 2012; Admoni et al.,
2013).

Researchers have also focused on proxemics—the amount
of personal space that people maintain around themselves.
Takayama and Pantofaru (2009), for example, showed that people
became uncomfortable when a robot approached too close to
them. Mumm and Mutlu (2011) showed that additional social
cues (e.g., head gaze, likability of the robot) interacted with social
distance as well. Beat gestures are another form of non-verbal
signaling that can be used in interaction. For example, Huang and
Mutlu (2013) showed that an agent that provides beat gestures
while talking is perceived as more natural. Nods by agents and
robots have also been shown to improve interaction and the
naturalness of the system (Sidner et al., 2006; Arimoto et al.,
2014).

Machines that demonstrate understanding of humans
(whether they truly possess such understanding or not) still
clearly represent an important benchmark toward creating
machines that humans in turn feel they can understand (see
Section 6 for further discussion on XAI). For humans to feel
that they can probe the understanding of machines in the
same manner as human conversational partners, machines
must possess the propensity to engage collaboratively and
cooperatively with humans in achieving understanding, rather
than focusing on the unilateral direction of the machine
understanding the human. One possible path toward unqualified

human-machine partnership and understanding may require
stepping back to better assess the foundations of most human
collaborations. Once a common interest or goal has been
realized, the next steps are likely to include considering the
expectations and thought process of the other, and recognizing
how these may differ from your own.

5. APPROACHING UNDERSTANDING

FROM MENTAL MODELS AND THEORY OF

MIND

A central part of the process of understanding a phenomenon
is to build a model of it, i.e., a representation of its salient and
functional components. Models may look very different from the
phenomenon itself. For example, a watch serves as a model of
the rotation of the earth. In cognitive science, human factors, and
computer science, researchers agree that humans build models
mentally to understand situations or other agents. When a set of
individuals build mental models that overlap with one another,
they are able to communicate efficiently and, as a consequence,
carry out tasks that demonstrate shared understanding.

In this section, we will review the various mental model
concepts and measurement methods, as well as theory of
mind indicators of inferences about the state of other agents,
and examine how each method may help provide insight on
understanding in humans and AI systems.

5.1. Mental Model Definitions and Theory
There are multiple perspectives on the definition of mental
models. Johnson-Laird (1983) defines mental models as small-
scale mental simulations of the world we develop to enable
reasoning about the environment around us. Gentner and
Stevens (2014) adds that mental models are representations
users develop of an environment, situation, or other agent.
These models are developed through interaction with a
system as well as the user’s inferences about the situation or
system behaviors. Mental models can be influenced by users’
previous experiences such as their exposure to technology and
similar systems (Gentner and Stevens, 2014). Most researchers
and scientists agree on the ways mental models support
intelligent behaviors:

“Mental models are the mechanisms whereby humans are able to

generate descriptions of system purpose and form, explanations of

system functioning and observed system states, and predictions of

future system states” (Rouse and Morris, 1986, p. 3).

Shared mental models are similar; however, shared mental
models are the common representations humans have about
the functioning, states, and future states of systems. Shared
mental models are usually investigated at a team level where
the “system” being represented can be a system a team uses
together or the “team” itself and its members (Cannon-Bowers
et al., 1993; Kennedy et al., 2008; Jonker et al., 2010). Previous
research suggests improved mental models and shared mental
models are positively correlated with improved individual and
team performance. Effective mental models have also been
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linked to better situational awareness of a system and improved
metacognition (Salas et al., 1994; Scielzo et al., 2004).

5.2. Ways of Measuring Mental Models
There are various methods for mental model elicitation, and each
measurement specifically addresses certain aspects within mental
model theory. Think Aloudmethods are one set of mental model
elicitation techniques. This method encourages participants to
verbally express their thought process about a situation or while
completing a task. Participants are guided through the steps
of describing their cognitive processes explicitly, often through
verbal protocols such as think-out-loud challenges, prospect,
and task reflection (Hoffman et al., 2018). One example of this
technique is the Think Aloud Problem Solving Task. During this
process participants verbally describe their thought process as
they complete a task. This method helps to provide insight into
how participants frame problems and the steps they take to solve
an issue. As participants explain their thoughts, experimenters
assess how participants conceptualize a system or issue (Hoffman
et al., 2018). Task reflection is a similar technique, where
experimenters probe participants post-task about their thought
process for completing the task. These methods (e.g., structured
interviews, self-explanation task, prediction task) primarily focus
on the user’s overall representation of the system, approach
toward problem-solving, and task reflection/execution (Hoffman
et al., 2018).

Another set of elicitation methods draw on how participants
understand concepts and their relations to each other, typifying
the various components and creating groups of similar factors.
Examples of these methods include card sorting, pathfinder,
and familiarity ratings. During card sorting and pathfinder
methods, participants group similar concepts together and
rate how similar each concept is with each other (Hoffman
et al., 2018). This measure can help participants schematically
represent their conceptualization of a system, its components,
and the relationships among items. Diagramming is another
mental model elicitation technique, where users can freely draw
a pictorial representation of their cognitive process, system, or
events (Hoffman et al., 2018). This method can help eliminate the
bias of the experimenter on how the user pictorially represents
their mental model arrays andmay capture new relationships and
spatial orientations of concepts.

5.3. Probing Mental Model Failures
Elicitation approaches can easily help researchers identify failures
of understanding and gaps in someone’s mental model of a
system. While conducting these elicitation methods, scientists
are able to identify where there is a gap in understanding and
the nature of the individual’s failed understanding, providing
rich information to equip scientists to repair where the
misunderstanding occurred. For instance, a novice mechanic
could be asked to diagram the layout of an engine and to
Think Out Loud the process they would take to complete an
engine repair. With the assistance of a subject matter expert,
scientists can easily determine whether the participant is lacking
knowledge of the schematic layout of the engine or if the
mechanic is still unfamiliar with the repair process.

While these methods seem to be very insightful for measuring
users’ representations of systems, these methods of mental
model measurement may not have the ability to capture
the entirety of understanding, especially when measuring a
human’s understanding of another human being. Previous
research outlines the variability in mental models. Gentner
and Stevens (2014) suggest that mental models are unstable
mental representations. Additionally, mental models are often
incomplete and lack firm boundaries. This is especially true
when measuring one’s mental model of an unceasingly evolving
system. As teammates and humans continue to interact and
gain more information about each other, mental models change.
One teammate’s mental model of their fellow team member
may change as they continue to work together; experiences help
team members learn more about their teammates’ experiences
and knowledge. Additionally, as a team faces new challenges
together, new knowledge is built and then processed, changing
each member’s mental model of the world around them,
their task, and their teammates. Mental model measurements
also fail to capture attitudes and emotional relations between
human and human mental models; these aspects are key and
crucial to how mental models of teammates are used when
completing tasks and relating with one another. We theorize
that while mental model measurements may provide effective
probing mechanisms for a user’s understanding of a system,
it may lack the robustness to comprehensively measure and
capture a human’s “understanding” of another human. Therefore,
leading us to believe that understanding may be a bit more
intricate and sophisticated than a mental model representation,
especially when the subject of the mental model is complex and
continually evolving.

5.4. Un-testable Theories in Theory of Mind
The shallowness of these representations is also evident for
most measures of theory of mind (ToM), an extension of
mental models in that both consider the knowledge or awareness
of someone else, yet takes the additional step appreciating
how that framework may differ from your own experience.
This ability to recognize another’s mental state as different
from one’s own is most commonly operationally measured
through counterfactual reasoning or false belief (e.g., Sally-
Anne task; Baron-Cohen et al., 1985, though ToM has been
demonstrated across a host of situations), such completion of
another’s failed action and recognizing another’s capacity to have
concurrent yet conflicting desires (Beaudoin et al., 2020). This
ability to hypothesize about the knowledge and intentions of
another agent, whether living or synthetic, develops at an early
age (Beaudoin et al., 2020) and is a valuable skill for social
interactions and effective teaming. In human-human teams, ToM
is considered critical to ensuring constructive planning and
exchanges toward accomplishing a task, whereas the benefit in
human-machine interactions is somewhat more ill-defined yet
still seen as important (Benninghoff et al., 2013; Winfield, 2018).

As noted with mental models, numerous measures have
been developed to evaluate an individual’s capacity for ToM,
yet the overwhelming majority of these are only sensitive
to developmental stages and clinical populations (Beaudoin
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et al., 2020). Such tasks typically ask participants to adopt the
perspective of a character in the story who has incomplete
knowledge of the situation, then infer how that character is
likely to respond. Moreover, most such tasks rely on drawings
or situational schematics to describe a third-person account of a
fictional scenario, similar to mental model elicitation approaches.
However, imaging studies indicate such experiences fail to elicit
the same neural response evident for actual social interactions,
suggesting participants do not perceive these narratives in a way
that accurately replicates personal interactions (Byom andMutlu,
2013).

More interactive methods have been used, such as Meltzoff ’s
behavioral re-enactment study (Meltzoff, 1995) which
demonstrated that 18-month-olds were able to correctly interpret
and complete target actions the experimenter initiated but did
not finish. Though these results are compelling, paralleling
the Chinese room experiment, it is impossible to conclude
whether the toddlers had actually inferred the experimenter’s
intention, or were simply imitating an adult, behavior common
for that age group (Jones, 2009). Additionally, studies involving
neuro-typical adults have evaluated both observed behaviors
in a communication game (Keysar et al., 2003) as well as self-
reported experiences during daily activities (Bryant et al., 2013),
and concluded that adults, although capable of forming a ToM,
actually used the skill very rarely during real-world interactions.

In light of these findings for ToM, as well as those related
to mental models outlined previously, the ability to generate
any type of insight into the thoughts and perceptions of
others is no doubt beneficial, both in casual and teaming
environments. Indeed, the capacity to form mental models and
ToM is particularly useful across a wide variety of inter-personal
situations, such as supporting effective negotiations (de Weerd
et al., 2017), and learning or adopting more sophisticated
societal norms for ethics and morality (Leslie et al., 2006). It is
important to note however that both mental models and ToM
are thought to be beneficial precisely because they may help
to avoid misunderstandings and failures in collaboration, yet
implementation of the metrics discussed above offers little in
the way of ensuring two agents have a shared understanding.
Thus, members of a team, either human and synthetic, may
adequately demonstrate these skills of social cognition, but this
should not be viewed as a proxy for ensuring all teammates have
a shared understanding.

6. IMPLIED DEFINITIONS OF

UNDERSTANDING: EXPLAINABLE AI

One might plausibly think that artificial intelligence is at its core
the study of systems that understand. (McDermott, 1976, p. 4)
notes a temptation to assume away the challenge, however: “If
a researcher tries to write an “understanding” program, it isn’t
because he has thought of a better way of implementing this well-
understood task, but because he thinks he can come closer to
writing the first implementation.” In the intervening half-century
we have not yet seen that first implementation.

Relatively little research in AI explicitly addresses
understanding in computer systems or its assessment (Thórisson
et al., 2016). Simon and Eisenstadt (2000) are an exception. They
propose that artificial understanding be treated no differently
from human understanding, with conventional psychological
tests being applied. They further propose that, in contrast
to human testing, we have direct access to an AI system’s
internal program structures and memory, which may provide
evidence for or against understanding: for example, whether
a necessary perceptual discrimination is present, or whether a
given capability has been learned or was pre-programmed.

Páez (2019), writing about systems that explain their own
behavior, is also an exception. Páez holds that explanation should
not be the goal for explainable AI (XAI) systems—rather, “a
pragmatic and naturalistic account of understanding” should
be the focus of the field. Such an account is currently lacking.
Research in XAI offers promising hints about understanding,
however, which we pursue in the remainder of this section. Our
coverage of XAI, to include intelligible systems (Páez, 2019;Weld
and Bansal, 2019), transparent systems (Castelvecchi, 2016),
and related categories, will be selective. More comprehensive
resources are Confalonieri et al. (2021)’s history, Vilone and
Longo (2020)’s systematic review, and Mueller et al. (2019)’s
meta-review and bibliography.

As a preliminary, note that it is common to probe a person’s
understanding of some phenomenon by requesting explanations,
as in the verbal protocols discussed in Section 5; every schoolchild
is familiar with “Explain this. . . ” test questions. This is a form
of abduction: we use the requests for explanations as probes,
with responses providing evidence for or against specific forms
of understanding. Now consider an XAI system, or even all XAI
systems. We can translate the implemented explanations and
explanatory processes into probes. Because we focus on probing
for failure, we do not need to attribute understanding to these
systems; rather, each failed probe is interpreted as demonstrating
a lack of understanding.

By “translating” an explanation into a probe, we mean that
an explanation is typically a carefully structured account that
contains different kinds of information. Each is a potential
type of probe. We outline major categories below. We label
each category, describe representative types of probes found in
the literature, and give an example template for a probe. For
simplicity, assume that the target phenomenon to be explained
(and implicitly, understood) is a behavior y of a given system, and
that a probe is of the properties of some set of measurements X of
the system or of the environment (which the system may be able
to observe or change).
Relevant information. In a symbolic reasoning system, a discrete
item of information may be relevant because it is required to
make a potential inference (Buchanan and Shortliffe, 1984) or
to enable a step in a plan (Fox et al., 2017; Chakraborti et al.,
2020). Image classification systems process information in which
sets of items may be relevant rather than individual items (e.g.,
edges or patches rather than pixels). A well-known non-XAI
example is Pomerleau (1992)’s discovery that ALVINN, an early
autonomous vehicle, had learned to use the amount of grass
visible alongside the road as a surrogate for the road’s curvature
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when it needed to turn, causing unexpected behavior in non-
grassy settings. Comparable examples are now commonplace
in XAI systems for deep learning (Xu et al., 2019). A simple
probe might take the form, “Does y vary predictably with
different values of X?” where X may represent different sets of
measured variables.
Relevant distinctions. In some cases, in particular for systems
that deal with non-discrete data, distinctions are needed even to
define relevant features. These include distinguishing features in
image classification, whichmay be highlighted as patches, colored
overlays, saliency maps, etc. (Nourani et al., 2019; Xu et al.,
2019), as briefly discussed in Section 6.1; differences between
term frequencies in text information retrieval (Hearst, 1995); and
threshold values or functions on continuous data (Buchanan and
Shortliffe, 1984). A probe might take the form, for X known to
be relevant information, “Does y vary predictably with different
possible values of X only within a specific range of X? What is
that range?”
Relevant relationships. Treating relationships as a separate
category from items of information is largely arbitrary, in
that the relationships themselves are information, as are
properties of relationships. The distinction can be convenient
for discussion, however. Relationships can be relevant in
different ways. In explainable AI planning (Fox et al., 2017),
different types of relationships between actions may be relevant:
temporal ordering; “causal” relationships, i.e., in a causal-
link planning sense (Young et al., 1994); the absence of
predecessor actions needed for a given action; etc. A naïve Bayes
classifier is considered highly explainable in that it explicitly
identifies input variables relevant to the output classification
variable (Kononenko, 2001). More generally, a Bayes network
may be interpreted as a causal model, in which the existence of
individual links is relevant: X may be the set of causes for y, for
example. A simple probe might take the form, for different X,
“If X were constant, at different possible values, would y vary
predictably all of the time? None of the time?”

The probes above address “local” aspects of a phenomenon.
Further, there is an emphasis on prediction, though predictive
accuracy is not generally considered sufficient for explanation or
understanding. We can also consider the more global structure
and content of an explanation as evidence for understanding.
Counterfactuals. An account of what would happen under
different conditions is important in explanation (e.g., Fox et al.,
2017; Korpan and Epstein, 2018) in part because it can be
evidence for understanding in terms of causation. Again, these
are the central probes and explanations sought for theory of mind
assessments. Some of the example probes expressed above have
this flavor, e.g., “If the values ofX were such and such, what would
happen to y?”
Generalizations and abstractions. If we are interested in y
under many different values of X, we can think of our goal as
mapping out the policy that governs the system’s behavior. A
large number of individual samples may be adequate, but a
more concise generalization may be possible, ideally one that
applies to values of X and y not yet observed. This is a goal
of ambitious work by Thórisson et al. (2016) in the area of
artificial general intelligence. They directly define understanding

of a phenomenon 8 as a set of models capable of predicting,
explaining, recreating, and achieving goals with respect
to 8.
Analogical cases. Relatedly, if a phenomenon is understood in
one domain, it may be possible to transfer that understanding to
a new domain. For example, in robot behaviors, navigating to a
given location and reaching out to grasp a target object generally
depend on different control mechanisms and environment
observations. Nevertheless the concept of “blockage of the path”
is a generalization for some kinds of failure (St. Amant et al.,
2019); each is a plausible analogy for the other.

For all of these types of probes, we require some ground truth
against which we can compare a probe’s output. Is a system
capable of evaluating relevance, making appropriate distinctions,
identifying related entities with respect to some phenomenon, in
particular its own behavior? Can it extrapolate, answer “What
if?” questions, explain how unlike situations actually share some
underlying similarities? As we walk through a set of probes, we
accumulate successes and failures, to give a better picture of the
performance of a system or a human.

6.1. The Interpretability (or Lack Thereof) of

Transformers
The success at demonstrating apparent understanding of
GPT-3 and its subsequent variations of sizes and styles of
transformer networks beg the question of its interpretability and
explainability. Consequently, there is emerging work seeking to
interpret the internal representations underlying transformers
success; it is an active area in which researchers are starting
to probe AI understanding and might further benefit from
organizing the investigations by the systematic areas of probing
outlined above.

Self-attention (Vaswani et al., 2017), the driving force behind
the power of the transformer, has come out in front as an
interpretable neural network due to its ability to link network
weights to specific natural language tokens or pixels in an
image; that is, it brings attention to what is important. This
view is common in the literature (e.g., Xu et al., 2015; Martins
and Astudillo, 2016; Choi et al., 2017; Li et al., 2017; Xie
et al., 2017; Vig, 2019; Tang et al., 2020). To quote Li and
colleagues: “Attention provides an important way to explain the
workings of neural models, at least for tasks with an alignment
modeled between inputs and outputs, like machine translation or
summarization” (Li et al., 2017, p. 2).

In reality, displaying this interpretability is not as simple as
one may be led to believe. However, we posit that attempts
to display attention weight relationships for interpretability
are an example of attempts to probe the transformer’s
understanding. Specifically, they are probing the relevant
relationships. For example, Jain and Wallace (2019) performed
extensive experiments across a variety of NLP tasks that aim
to assess the validity of using attention weights as explanations
for the network’s predictions. They tested two lines of thinking.
Attention weights should correlate with feature importance
measures, and counterfactual attention weights should lead
to corresponding changes in prediction. Their results suggest
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that even though these attention models consistently lead
to indisputable improved performance on NLP tasks, the
transparency, explainability, and interpretability of these models
is questionable at best, especially when these models are deep and
have complex connections.

Brunner et al. (2020) found similar results in their study
of identifiability of attention weights and token embeddings.
They found that attention weights are not identifiable, i.e., there
are infinitely many attention distributions that can lead to the
same internal representation and model output. However, they
present Hidden Token Attribution, a gradient-based method
to quantify information mixing and showcase its ability to
investigate contextual embeddings in self-attention models. It
seems hope is not lost on the interpretability of transformers.
Chefer et al. (2021) recognize the difficulty in following
connections of complex networks and have benchmarked their
method on recent visual Transformer networks (such as ViT
model), as well as on text classification problems (BERT).
They have demonstrated the validity of their approach over
existing explainability methods. In the world of transformers and
attention, the question of understanding is still up for debate.

7. DISCUSSION AND CONCLUSION

We have outlined herein a set of natural language probe
structures that can be adapted to different domains and
applied to both human and AI understanding. Critical
to evaluating theories about understanding, these can be
defined independently of proposed theories and prior to
any empirical evaluations. They provide the structure for
independent evaluations. They also have the flexibility to
adapt to different contexts for assessing understanding to
provide a consistently measured body of evidence. Thus,
consistent with Hannon (2021)’s recent argument, we can
craft that set of criteria to define understanding through the
various degrees and abilities (plural) enabled by the process of
understanding.

We have argued here that natural language is the core
method for probing understanding. We have highlighted that
while there are many ways of showing understanding (e.g.,
performing well on a task), we are suggesting that language,
because it is the most familiar symbolic system to humans, is
the best, if not the only, method for probing understanding.
We should highlight that by natural language we do not mean
“perfect spoken language.” First, we realize that language can be
extremely nuanced with voice tone, gesture, etc. Second, there
are many forms of language that can convey many of the same
signals—sign language, text, etc. Forms of language that can take
advantage of multi-modal cues may convey understanding with
more efficient communications. Thus, we are proposing that
the more language-cues (e.g., spontaneous gesture, intonation)
that are available, the more nuanced and better probes of
understanding will be.

Additional complexity in structuring probes for elucidating
understanding arises because sometimes we are probing
understanding of the external world or mechanical systems,

and sometimes we are probing an agent’s understanding of
another human or intelligent system, as well as whether teamed
intelligent agents share mutual understanding. The process
of understanding has a flexibility that can support reasoning
and successful interpretation of all these types. Probes will
need to flexibly adapt, because probes designed for one type
of understanding may not elucidate another. In the present
work, we have not yet outlined a way to translate the
probe structures into specific experimental paradigms. There
is likely not a single way to do this; it will depend on a
number of factors, like whether you are probing humans or
intelligent agents, whether you have spoken or strictly typed
communications (or a combination of modalities), and whether
the probes are only posed in conversation/communication
tasks or if there are additional task completion targets or
performance metrics to pair with the probes. Elaborating
potential paradigms for putting the probes into practice is left for
future work.

There remain some intelligent behaviors that systematic
probing may still struggle to help measure or explain as the
process of understanding unfolds. Consider the sudden ability to
solve an insight problem (Metcalfe, 1986; Metcalfe and Wiebe,
1987). People are generally unable to articulate how they are
trying to reason through or solve a problem prior to insight.
After the “aha” moment however, people can explain the solution
verbally. This is further evidence that understanding requires
natural language expression. Not enough of the process has
unfolded when the person cannot explain their understanding;
the ability to articulate understanding marks achieving a depth of
understanding that can be probed.

One possible critique of our proposal that natural language is
the coremethod for probing understanding is that understanding
can be demonstrated by performance. For example, if a robot
observes a tennis player and learns how to hit various tennis
shots, does it understand how to play tennis? In this scenario,
the robot could have simply learned various cues for how to
hit the ball (stimulus-response) or even how to move itself to
win a point. However, we would argue that unless it could
use symbolic communication—language of some sort—it does
not actually understand the game of tennis (or even the shots
it can make). For example, if the robot could describe why
it would lob a ball over a net player, we would judge it to
have a much better understanding of the game than if the
robot could just perform the action at the right time. Along
these lines, Baker et al. (2020) demonstrated the emergence
of intelligent behaviors in reinforcement learning agents that
did not have any NLP capabilities. This seems to be a counter
argument to our natural language requirement. While the
agents do move through several levels of sophistication in
their coordinated activities, they do this with perfect internal
knowledge of the states of each other and the environment. Take
away any of this knowledge, and the coordination will falter.
This suggests that the need to establish understanding within and
between agents is the consequence of humans and most systems
lacking perfect knowledge of the states of the other agents.
That information must be communicated through a common
symbolic system.
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