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Abstract:
Object recognition is a practical problem with a wide variety of potential applications. Recognition
becomes substantially more difficult when objects have not been presented in some logical, “posed”
manner selected by a human observer. We propose to solve this problem using active object
recognition, where the same object is viewed from multiple viewpoints when it is necessary to
gain confidence in the classification decision. We demonstrate the effect of unposed objects on a
state-of-the-art approach to object recognition, then show how an active approach can increase
accuracy. The active approach works by attaching confidence to recognition, prompting further
inspection when confidence is low. We demonstrate a performance increase on a wide variety of
objects from the RGB-D database, showing a significant increase in recognition accuracy.

1 Introduction

State-of-the-art-approaches to visual recogni-
tion have focused mostly on situations when ob-
jects are “posed” (i.e., the camera angle, light-
ing, and position has been chosen by an observer).
When conditions become more variable, the abil-
ity to visually recognize objects quickly decreases.
In one prominent example demonstrating this af-
fect, [Pinto et al., 2008] produced very good ac-
curacy classifying objects from the Caltech-101
dataset [Fei-Fei et al., 2004], but their state-of-
the-art approach was reduced to performing at
chance when variation was introduced. Specifi-
cally, this meant viewing objects at any arbitrary
pan, tilt, scale, and rotation (both in plane and
depth).

Unfortunately, such variability is common in
the objects that we see scattered throughout our
environment. In some cases (see figure 1(a)) it
may be difficult for even the most robust visual
object recognition approach to recognize an ob-
ject. What results is a degraded performance
from the object recognition system. Figure 1(a)
shows two objects from the RGB-D dataset.
From left to right the objects are a dry battery,
and a hand towel. However, in both cases, the ob-
ject classes could be mistaken with similar classes.
For example, the dry battery could easily be mis-

taken for a flashlight or a pack of chewing gum.
The hand towel could easily be confused for a 3
ring binder.

Figure 1(b) shows the accuracy of Leabra (de-
scribed further Section 3.1) recognizing a dry bat-
tery over a range of different pan angles, with
a slightly different camera tilt. While perfor-
mance is generally good, there is a point at which
performance drops significantly. A system that
had been recognizing objects with an accuracy of
about 90% suddenly decreases to an accuracy of
30% when the pan and tilt of the object modified.
An image from this region is shown in figure 1(a).

The strategy of improving object recognition
through multiple viewpoints is referred to as ac-
tive object recognition [D. Wilkes, 1992]. Several
([Denzler and Brown, 2002, Farshidi et al., 2009,
LaPorte and Arbel, 2006]) have proposed proba-
bilistic frameworks for active object recognition.
These frameworks serve to both incorporate mul-
tiple viewpoints as well as incorporating prior
probability. However, most have been evaluated
on only a small number of objects, using simple
recognition schemes chosen specifically to high-
light the benefits of active recognition.

We demonstrate the benefit of active object
recognition to improve the results of a state-of-
the-art approach, specifically, to improve in ar-
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(a) Challenging Examples
from the RGB-D dataset.

(b) Recognizing the Dry Battery using a
State-of-the-Art Approach

Figure 1: Images from the RGB-D dataset.

eas where performance is affected by the pose of
an object. We recognize objects using Leabra 1,
which is a cognitive computational neural net-
work simulation of the visual cortex. The neural
networks have hidden layers designed to mimic
the functionality of the primary visual cortex
(V1), the visual area (V4), and the inferior tem-
poral cortex (IT) . We extend Leabra by adding
a confidence measure to resulting classification,
then use active investigation when necessary to
improve recognition results.

We demonstrate the performance on our sys-
tem using the RGB-D [Lai et al., 2011] database.
The RGB-D contains a full 360◦ range of yaw, and
three levels of pitch. We perform active object
recognition on 115 instances of 28 object classes
from the RGB-D dataset.

The remainder of the paper is organized as
follows. We present related work in the field of
active object recognition in Section 2. We dis-
cuss our approach in Section 3, then present ex-
perimental results in Section 4 with concluding
remarks in Section 5.

2 Related Work

Wilkes and Tsotsos’ [D. Wilkes, 1992] sem-
inal work on active object recognition exam-
ined 8 origami objects using a robotic arm.

1http://grey.colorado.edu/emergent/

The next best viewpoint was selected using
a tree-based matching scheme. This sim-
ple heuristic was formalized by Denzler and
Brown [Denzler and Brown, 2002] who proposed
an information theoretic measure to select the
next best viewpoint. They use average gray level
value to recognize objects, selecting the next pose
in an optimal manner to provide the most infor-
mation to the current set of probabilities for each
object. They fused results using the product of
the probabilities, demonstrating their approach
on 8 objects.

Jia et al [Jia et al., 2010] demonstrated a
slightly different approach to information fusion,
using a boosting classifier to weight each view-
point according to the importance for recognition.
They used a shape model to recognize objects,
using a boosted classifier to select the next best
viewpoint. They recognized 9 objects in multiple
viewpoints with arbitrary backgrounds.

Browatzki et al. [Browatzki et al., 2012] used
an active approach to recognize objects on an
iCub humanoid robot. Recognition in this case
was performed by segmenting the object from
the background, then recognizing the object over
time using a particle filter. The authors demon-
strated this approach to recognize 6 different cups
with different colored bottoms.

3 Methodology

We use Leabra to recognize objects (sec-
tion 3.1). Once an object has been evaluated
by Leabra, we find both the object pose (section
3.2), and attach confidence to the resulting classi-
fication (section 3.5). Finally, when the resulting
classification has low confidence, we actively in-
vestigate (section 3.6).

3.1 Leabra

The architecture of a Leabra neural net-
work is broken into three different layers,
each with a unique function. The V1 layer
takes the original image as input, then uses
wavelets [Gonzalez and Woods, 2007] at multiple
scales to extract edges. The V4 layer uses these
detected edges to learn a higher level represen-
tation of salient features (e.g., corners, curves)
and their spatial arrangement. The features ex-
tracted at the V1 layer includes multiple scales,
therefore features extracted in the V4 layer have
a sense of the large and small features that are



Figure 2: An example of visual aspects from one level
of pitch. The images show different visual aspects,
and the arrows show how each of these visual aspects
are connected.

present in the object. The V4 layer also collapses
on location information, providing invariance to
the location of the object in the original input
image. The V4 layer feeds directly into the IT
activation layer, which has neurons tuned to spe-
cific viewpoints (or visual aspects) of the object.

3.2 Visual Aspects

Object pose plays an important role in
recognition. We consider pose in terms
of visual aspects [Cyr and Kimia, 2004,
Sebastian et al., 2004] (see figure 2). When
an object under examination is viewed from a
slightly different angle, the appearance generally
should not change. When it does not, we refer
to this as a “stable viewpoint”, both the original
and the modified viewpoint belongs to the same
visual aspect V1. However, if this small change
in viewing angle affected the appearance of
the object, we would call this an “unstable
viewpoint” representing a transition between two
different visual aspects V1, and V2.

The human brain stores pose in a simi-
lar manner. Neurophysiological evidence sug-
gests that the brain has view-specific encod-
ing [Kietzmann et al., 2009, Frank et al., 2012].
In this encoding scheme, neurons in the IT cortex
activate differently depending on how an object
appears. Referring to Figure 2, when we look at
the football in the first visual aspect, a certain
set of neurons in the IT layer activate. When we
look at the football in the second visual aspect, a
different set of neurons activate.

To find visual aspects, we use the IT layer
in the Leabra neural network. We find visual
aspects using unsupervised learning, clustering
IT activations. We describe this process in sec-
tion 3.3.

3.3 Finding Aspects

Classifying an object using a Leabra network pro-
duces a set of neurons that have been activated
in the IT layer. Leabra contains a total of 210
neurons in this layer, with similar activation pat-
terns occurring when an object is viewed in a
similar pose. We group activation patterns using
unsupervised learning through k-means cluster-
ing [Duda et al., 2000].

Some care must be taken to establish the num-
ber of clusters, k, since this is synonymous with
the number of visual aspects of an objects. This
number is variable depending on the complexity
of the object. For example a simple, uniformly
colored, perfectly symmetric object such as a ball
would only have one aspect. That is, a change
in viewing angle will never affect the appearance
of the object. Contrast this with a more compli-
cated object, such as an automobile. An automo-
bile would likely have a great number of visual
aspects because of its complex structure.

Figure 3: Four different visual aspects found using
clustering.

The value of k cannot be estimated a priori,
so we set this value using a heuristic based on
viewpoint stability. A small change in viewpoint
(δ) should generally not result in a new visual
aspect. Therefore, when the correct value of k has
been found, all of the elements resulting clusters
(cl) will mostly all belong to stable viewpoints.
We determine the quality of the clustering using
the hueuristic shown in Eq. 1, where c represents
a cluster.

m(c) =
∀i∈c|cl(pose(i)) = cl(pose(i) + δ)|

|c|
(1)

To determine the correct number of visual as-
pects, we set k to a large number, then evalu-
ate each resulting cluster. If the majority of the
elements of any cluster do not belong to stable
viewpoints, k is decreased, then the process is re-
peated. Some visual aspects from different object
classes are shown in figure 3.



3.4 Distinctiveness of Visual
Aspects

A basic tenet of active object recognition is
that some viewpoints have greater distinctive-
ness than others. In this section, we es-
tablish the distinctiveness of each visual as-
pect using STRoud [Barbara et al., 2006], a test
which evaluates the distinctiveness (or conversely
“strangeness”) of the members of each class. The
strangeness of a member (m) is evaluated using
the ratio of the distance to other objects of that
class c over the distance to all points of other
classes c−1 (Eq. 2). In practice, we evaluate this
by selecting the k smallest distances.

str(m, c) =

∑K
i=1 distance

c(i,m)∑K
i=1 distance

c−1(i,m)
(2)

The sum of the distance to objects in the
same class c should be much smaller than the
sum of the distances to other classes c−1. There-
fore, a distinctive data point would have very low
strangeness. When referring to visual aspects (s),
the probability that we have correctly identified
object (o) in visual aspect s is determined using

p(s|o) =
|∀i∈sstr(i, s) ≤ str(o, s)|

|s|
(3)

3.5 Recognition from a Single
Viewpoint

To recognize object o, we use the IT activa-
tion pattern from Leabra (a), then compare
this against known classes. We compute the
strangeness that the object belongs to each class
using Eq. 2. The probability of recognition is con-
ditionally dependent upon the distinctiveness of
the visual aspect s, as well as the confidence that
the object belongs to visual aspect s. The prob-
ability that we have recognized an object of class
o is p(oix|axsx), for object i using image x.

p(oix|ax, sx) = p(oix|ax)p(oix|sx) (4)

p(oix|ax) = αp(ax|oix)p(oix) (5)

p(oix|sx) = αp(sx|oix)p(oix) (6)

Eq. 5 can be interpreted as the probability
that we have observed the object given a partic-
ular activation pattern. If the activation pattern

observed is quite similar to known activation pat-
terns for object oi, we expect the probability to
be high. Similarly, eq. 6 can be interpreted as the
general confidence of recognizing object o in esti-
mated visual aspect s. Combining the two (eq. 4)
produces a uncertainty measure that accounts for
both similarity of activation patterns as well as
the confidence in the visual aspect.

3.6 Active Recognition

When confidence is low, a single image may not
be sufficient to correctly recognize the object. In
these cases, we make a small local movement to
view the object from a slightly different perspec-
tive, then combine the measurements. The prob-
ability that the object belongs to class i, as was
suggested in [Denzler and Brown, 2002], is esti-
mated using the product of all measurements that
have been taken over time (n). This also has
the potential for incorporating a prior probability,
which we have set to a uniform probability.

p(i) =

n∏
x=1

p(oix|ax, sx) (7)

4 Experimental Results

We experimentally validate our approach us-
ing the RGB-D dataset [Lai et al., 2011]. This
particular dataset was selected due to its large
number of object classes, many instances of each
class, and the range of poses where each instance
was imaged. A few examples of training images
are in Figure 5. Our experiments are conducted
using 115 instances of 28 object classes. RGB-
D has images of objects when viewed from three
different levels of camera pitch, rotating the ob-
ject a full 360◦ at each pitch level. We use 39
randomly selected images per object for training
(approximately 5% of the images). One third of
the remaining images were used for validation,
the remaining images are used for testing (52,404
images).

We extract the object using the foreground
mask provided in the RGB-D dataset. The
foreground mask represents the part of the re-
gion that is not on the table, as estimated
using the Depth information provided by the
Kinect. The size of the object was normalized
in the same manner as was previously described
in [Pinto et al., 2008]. The purpose of foreground



extraction and size normalization is to remove ir-
relevant size cues and to provide a measure of
scale invariance.

Table 1 shows the recognition rates for Leabra
(i.e., single viewpoint or static object recogni-
tion), and active object recognition. Active ob-
ject recognition has been set for very high confi-
dence (p=0.99999) and therefore will only recog-
nize an object when it is extremely confidence in
the results. Note that this is a confidence on a
decision-level basis, and does not necessarily pre-
dict the overall performance of the system, as per-
formance is driven by the variability of the testing
data.

Figure 4: Frequency and number of positions used
during the active object recognition process.

During active investigation, on average, ob-
jects are examined at 2.4 positions before they
are recognized. The frequency of the positions
used during examination are shown in 4.

Across all of the objects, the static approach
has a precision of 90.55%, and the active approach
has a precision of 96.81%. Furthermore, the stan-
dard deviation of precision varies greatly with the
approaches. The standard deviation for static is
9.27%, the active approach is 4.95%. This indi-
cates that not only is the accuracy of the system
improving, but the number of objects with a low
level of accuracy is also improving.

5 Discussion

State-of-the-art approaches to object recogni-
tion have been demonstrated to perform very well
on posed objects. We have shown that unposed
objects can be more difficult to recognize, par-
ticularly in degenerate viewpoints. Further, an

active strategy can boost the performance of the
system even when considering a simple approach
to next best viewpoint selection. Using only a
random movement strategy, we demonstrated a
6% boost in improvement without significantly
impacting the recognition speed of the system (re-
quiring only 2.4 positions on average).
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