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There has been much debate about instructional strategies for computerized 
learning environments. Many of the arguments designed to choose between 
the various philosophies have appealed, at least implicitly, to the behavior of 
effective human teachers. In this article, we compare the guidance and 
support offered by human tutors with that offered by intelligent tutoring 
systems. First, we review research on human tutoring strategies in various 
domains. Then we investigate the -capabilities of a widely used technique for 
providing feedback, model tracing. Finally, we contrast the types of guidance 
and support provided by human tutors with those in intelligent tutoring 
systems, by examining the process of recovering from impasses encountered 
during problem solving. In general, the support offered by human tutors is 
more flexible and more sUbtle than that offered by model tracing tutors, but 
the two are more similar than sometimes argued. 

Individualized instruction is often thought to be the most effective form of 
instruction, particularly for problem-solving domains (e.g., Bloom, 1984; 
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Cohen, Kulik, & Kulik, 1982). The driving motivation for early work in 
intelligent tutoring systems was the desire to capture the effective behaviors 
of human tutors, thereby creating an optimal educational tool (Carbonell, 
1970; Collins, Warnock, & Passafiume, 1975). 

Since the inception of the field, many interactive learning environments 
have been developed, representing a number of different approaches for 
delivering on the educational promise of computerized learning tools. These 
different approaches include systems that are very guiding and provide 
directive feedback to ensure that students do not flounder during problem 
solving (e.g., Anderson, Boyle, & Reiser, 1985; Goldstein, 1982). Other 
researchers argue that the best use of computers in instruction is to provide 
a context in which students can explore a domain and learn by discovering 
its principles (Papert, 1980; Schank & Farrell, 1987; Schwartz, 1989). These 
systems provide tools for a student to experiment with the domain, but 
typically do not track whether the student has embarked upon a poor 
strategy or made errors, and hence do not intervene in such situations. 
Other systems lie somewhere between these approaches, adopting the 
attitude of a coach that intervenes as little as possible, offering students 
suggestions primarily upon request or when the system determines that an 
error could be grossly counterproductive (e.g., Burton & Brown, 1982; 
Lesgold, Lajoie, Bunzo, & Eggan, 1991). Such systems do not offer the full 
freedom of an exploratory environment, but also do not direct the students' 
actions as much as some tutors. 

A recent focus of research on providing guidance in an intelligent 
tutoring system is the technique of model tracing (Anderson, Boyle, 
Corbett, & Lewis, 1990; Anderson, Boyle, Farrell, & Reiser, 1987; 
Anderson et al., 1985), in which the students' problem-solving steps are 
compared with the reasoning of an underlying domain expert. This 
matching is used to provide ongoing feedback to students while they 
progress through a problem. Evaluations of model tracing systems have 
demonstrated their effectiveness in facilitating students' learning and 
problem solving in several mathematics and computer programming do­
mains (Anderson et al., 1985; Anderson et al., 1990). 

The model tracing methodology produces a tutor that may intervene 
fairly frequently, and the interventions are typically very directive. This has 
led some researchers to raise concerns about this approach. Some re­
searchers have argued that there may be drawbacks to the model tracing 
approach because it does not allow students to learn by finding their own 
errors and repairing them, nor to reflect on multiple solution strategies 
(Collins & Brown, 1988; Schoenfeld, 1988). Others have argued that 
diagnostic feedback, such as is offered by model tracing systems, may 
actually interfere with students learning the metacognitive skills that enable 
them to manage their own learning (Scardamalia, Bereiter, McLean, 
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Swallow, & Woodruff, 1989). Finally, some researchers have questioned 
whether the directive nature of guiding intelligent tutoring systems can 
achieve the benefits of the more gentle and indirect guidance of human 
tutors (Fox, 1991; Lepper & Chabay, 1988), or that the problem-solving 
models could be sophisticated enough to teach more than simple procedural 
skills (Ridgway, 1988). 

The model tracing methodology is becoming an increasingly widespread 
technique for implementing guidance in an intelligent tutoring system, yet 
the concerns that have been raised suggest that there may be drawbacks to 
this approach. Therefore, it is important to consider the extent to which 
model tracing intelligent tutoring systems have succeeded in accurately 
modeling human tutors. Are systems such as model tracing tutors that 
intervene and guide students' problem solving faithful to the behavior of 
human tutors? Do these systems achieve the effectiveness exhibited by good 
human tutors? 

In this article, we argue that model tracing tutors indeed capture crucial 
aspects of the behavior of human tutors. Both human and computer tutors 
support students' reasoning and ensure that the problem solving remains 
productive. They do this by intervening to ensure that errors are detected 
and repaired and that students can work around any known (or yet 
undiscovered) impasses. However, we shall see also that the nature of this 
support differs somewhat between human and computer tutors. Human 
tutors allow their students to do more of the process of recovering from 
impasses than computer tutors, and thus human tutors may allow students 
to feel more in control of the interaction. 

To evaluate these issues, we need to briefly survey what is known about 
human tutoring, and then examine how guidance can effectively be 
implemented in computer tutors. We focus our discussions on the technique 
of model tracing because this methodology has been perhaps the most 
extensively evaluated of the proposals for embedding tutorial guidance in a 
computer. Following the discussions of the capabilities of computer tutors, 
we turn to an analysis that evaluates the common intervention strategies of 
human and computer tutors and reveals some of the differences between 
them. 

WHY ARE HUMAN TUTORS EFFECTIVE? 

A number of studies have documented the effectiveness of human tutors 
(Bloom, 1984; Cohen et al., 1982; Lepper, Aspinwall, Mumme, & Chabay, 
1990), supporting a common intuition that when a student has difficulties, 
the best course of action is to provide the student with one-on-one 
instruction. What do tutors do that is so effective? In this section, we 
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examine several studies of tutoring and review the critical features proposed 
by investigators of human tutoring. 

Studies of individualized tutoring in a variety of domains have demon­
strated improvements in both learning time and subsequent performance. 
Several recent studies have begun to analyze the pedagogical strategies of 
tutors to ascertain what underlies their effectiveness (e.g., Fox, 1991; 
Leinhardt & Ohlsson, 1990; Lepper et aI., 1990; Lepper & Chabay, 1988; 
McArthur, Stasz, & Zmuidzinas, 1990; Merrill, Reiser, & Landes, 1992; 
Putnam, 1987). These studies suggest a reason why tutoring is so effective: 
Experienced human tutors maintain a delicate balance, allowing students to 
do as much of the work as possible and to maintain a feeling of control, 
while providing students with enough guidance to keep them from be­
coming frustrated or confused. 

By allowing the students to do most of the problem solving, tutors allow 
them to learn by doing. A central part of the learning process occurs when 
students attempt to apply the instructional material to solve problems for 
themselves (Anderson, 1983; Anzai & Simon, 1979). Important learning 
may occur when students encounter obstacles, work around them, and 
explain to themselves what worked and what did not (Chi, Bassok, Lewis, 
Reimann, & Glaser, 1989; Ohlsson & Rees, 1991; VanLehn, 1990). How­
ever, this type of learning has potential cognitive and motivational pitfalls. 
Students trying to solve problems can expend much time and effort 
pursuing blind alleys because of errors or poor strategies. Of course, in 
some cases students may learn something valuable while searching for a 
solution. In many cases, however, such episodes leave students confused 
and frustrated; it may be difficult to return to the point in the solution 
before the error occurred, and misattributing the sources of a difficulty may 
even result in acquisition of faulty knowledge (Lewis & Anderson, 1985; 
Sweller, 1988). The assistance of a tutor enables a type of guided learning 
by doing, in which the students reap the rewards of active problem solving 
while the tutors minimize the dangers. In this way, tutoring has both 
cognitive and motivational advantages. 

Lepper and his colleagues have characterized the impact of tutoring on 
the motivation of students (Lepper et aI., 1990; Lepper & Chabay, 1988). 
They argued that tutors are highly interactive, yet intervene very indirectly 
during the learning sessions. Thus tutors help students solve problems 
successfully while minimizing their own apparent role in the success. Tutors 
manage to promote a sense of challenge, provoke curiosity, and maintain 
students' feeling of control. For example, Lepper et al. (1990) found that 
experienced tutors tended to emphasize the difficulty of the upcoming task, 
thus allowing failure to be attributed to something other than the students' 
lack of ability. This strategy was particularly effective for students who had 
already experienced difficulties in school. In addition, Lepper et al. found 
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that expert tutors tended to draw the students' attention to an error and then 
provide a second chance at the solution rather than giving explicit corrective 
feedback. Furthermore, the tutors in the study usually asked the student 
questions instead of providing explicit direction. The style of the feedback 
is important - Lepper et al. found that students chose to solve more 
difficult problems when tutors used this indirect style than when tutors used 
a more direct style. These results suggest that expert tutoring involves the 
use of subtle cues to guide and support students, thus maximizing their 
motivation to learn. 

Fox's (1991) analyses of discourse interactions between tutors and 
students are generally consistent with Lepper's view of tutorial interactions. 
She argued that tutors provide a "safety net" during problem solving, so 
that student errors are kept to a minimum. In Fox's study, tutors employed 
subtle techniques to notify students that a step in the solution required 
repair. These tutors provided frequent feedback, typically indicating very 
briefly their agreement with each step. A short hesitation (often less than 1 
sec) in responding with an "okay" typically led students to assume that 
something was amiss with the current step. After this clue, students 
frequently corrected the mistake. When more explicit help was required, the 
tutor focused the student's attention on the part of the solution that 
required modification or on information potentially useful for repairing the 
error. In Fox's view, tutors usually avoid telling students they are wrong or 
precisely how a step is incorrect; instead they lead students to discover the 
error themselves. Fox's results present a picture of tutoring as a guided 
problem-solving session, in which the student takes steps and corrects 
wrong paths, while the tutor helps the student stay on track. In some cases, 
students overtly request guidance in the form of goals to set, missing 
information to fill in, or explicit confirmation regarding the correctness of 
a step, but in most cases such requests are not necessary because the tutor 
provides such information through hints, leading questions, verbal agree­
ment, and other indirect methods. In fact, the amount of help offered at 
every step is striking, particularly because the tutors need to say very little 
to accomplish this. 

Not all analyses suggest that tutoring effectiveness relies on such implicit 
communicative methods, however. For example, McArthur et al. (1990), in 
studies of remedial tutoring, argued that tutors are much more directive 
than suggested by Fox (1991) and Lepper et al. (1990). McArthur et al. 
found that their tutors carefully structured the task the student was to 
follow, similar to the behavior of classroom teachers studied by Leinhardt 
and Ohlsson (1990). The tutors in the McArthur et al. study made sure that 
the student was aware of the current solution goals at all times. These tutors 
remediated errors upon occurrence, including not only pointing out where 
the error lay but often also suggesting a technique for solving the problem. 
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Like the analyses of Fox and Lepper, the work of McArthur et al. suggests 
that human tutors follow students' solutions very carefully and redirect 
students when they encounter impasses. Fox and Lepper argued that this 
redirection is very subtle, often involving only a pause or a leading question, 
whereas McArthur et al. found evidence that this redirection may be more 
directive, at least in remedial tutoring. 

These studies suggest that impasses in problem solving present important 
opportunities for tutorial intervention. Much of the tutorial interactions 
observed in these studies were centered around episodes in which a student 
became stuck, discovered an error, or committed an error. The central role 
of errors in structuring tutorial interventions has also been stressed by 
Littman and his colleagues (Littman, 1991; Littman, Pinto, & Soloway, 
1990). They argued that the content and timing of human tutorial feedback 
depend upon the error's context. Littman et al. gave tutors completed 
computer programs that contained marked errors and asked the tutors to 
describe how they would teach these students. Their tutors attempted to 
determine what misconceptions were embodied in the errors and how 
important each one was, and then used this information to set up tutoring 
plans. These plans corrected the most important bugs first, the less 
important ones later. The tutors used knowledge about categories of bugs 
and their potential causes to determine the relative importance of the errors. 
If a bug showed that a student had a poor understanding of earlier material, 
the tutors considered it more important. Similarly, if the knowledge gained 
from correcting one bug facilitated fixing another bug, the tutors set up the 
interventions to capitalize on this fact, focusing the student's attention on 
the more central bug. Finally, these tutors suggested a repair for an error 
that would mask other errors during the program's execution before 
remediating anything else. Thus, the tutors of Littman et al. modulated 
their responses based on how critical the student errors were. 

Merrill, Reiser, and Landes (1992) also found that a tutor's policy on 
intervention seemed to rely upon the context of the student's error. In some 
cases, principally syntactic errors, the tutor immediately told the student 
what to do to fix the error. However, when the error involved misunder­
standings about the actual behavior of objects in the domain, the tutor 
often focused the student on the features of the solution that were incorrect. 
In contrast, when the student began working on an inappropriate plan or 
forgot an important goal, the tutor often helped reformulate the goal that 
the student should pursue. In still other cases, the tutors simply ignored 
certain errors, returning to them at a later, more useful point. It appeared 
that the tutors modulated their intervention depending on the potential 
learning consequences of the error. Tutors quickly corrected errors that 
would be distracting and might lead to floundering, quickly focused the 
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students on more serious problematic components of a solution so that they 
could fix them, and, finally, withheld comments or offered much less 
directive feedback about errors that might lead to productive learning 
episodes later. 

The type of support that tutors provide students mirrors that of students 
in cognitive apprenticeship (Collins, Brown, & Newman, 1989). In these 
situations, teachers model the desired skill, coach students as they practice 
the skill, and gradually withdraw their support as students gain proficiency. 
The tutorial situation is similar, in that tutors provide only as much support 
as is necessary to help students overcome impasses, and withdraw the 
support as soon as it is no longer needed. 

This summary has revealed several perspectives on tutorial feedback. Fox 
(1991) and Lepper et al. (1990) argued that tutors use very subtle feedback 
upon errors or obstacles to maximize students' problem solving success. The 
McArthur et al. (1990) results also suggest that tutors follow students' 
solutions very carefully, but indicate that this feedback can be very 
directive. McArthur et al. argued that tutors give explicit feedback, 
sometimes even telling students how to solve a problem, and carefully 
structure students' tasks by reminding them of problem goals. Littman et al. 
(1990) and Merrill et al. (1992) argued that the context ofthe error is critical 
in determining feedback. 

These analyses demonstrate that human tutoring is a highly interactive 
process in which the tutor employs constant feedback to support students' 
problem solving. The tutors provide enough direction to help students plan 
and create a solution, using error feedback and hints to prevent them from 
becoming lost in unprofitable solution paths. Human tutorial guidance 
appears to be structured, in large part, around the impasses that students 
encounter. The content and timing of feedback appear to depend critically 
on the consequences of the particular error or impasse encountered. 
Sometimes tutors allow students to discover their own errors, but might 
intervene immediately at other times. Regardless of the timing of the 
intervention, the feedback is carefully designed to allow students to do as 
much of the work as possible while still preventing floundering. The 
feedback can be quite subtle, however, because tutors appear to accomplish 
much of their interventions without being obvious that they are directing 
the student. This may account for the finding that tutored students feel very 
much in control of their own learning. 

If we want to model human tutorial feedback on computers, we must 
consider how an intelligent tutoring system could offer similar highly 
interactive yet subtle guidance. How successful are current attempts to 
achieve these goals in a computerized tutor? What are the obstacles facing 
computer tutors? In the next section, we explore these questions by 
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examining one highly successful technique used in intelligent tutoring 
systems, model tracing, and by evaluating its successes, the difficulties with 
the methodology, and its potential. 

WHAT CAN BE ACHIEVED IN COMPUTER TUTORS? 

As the last section showed, human tutors provide highly interactive 
feedback to support students' problem solving. This feedback is provided 
through the tutors' careful monitoring of students' problem solving. When 
students go off the track or get stuck, tutors generally intervene to help 
them recover from the impasse. The feedback from the tutors is ongoing, 
providing confirmation or questions at nearly every step, but the feedback 
they provide is very subtle. 

Therefore, to model the abilities of human tutors, an intelligent tutoring 
system must be able to follow students' reasoning during problem solving. 
If a system follows a student's solution step by step, it can check that each 
action the student takes is a legal construction in the domain and track 
whether the student is still on a viable solution path. Feedback can be 
provided upon errors, and hints can be suggested if students are unsure how 
to proceed. 

One class of successful techniques for following students' solutions and 
identifying errors entails matching the students' problem-solving steps with 
the reasoning of an underlying rule-based domain expert (Anderson et al., 
1985; Clancey, 1987; Goldstein, 1982; Kimball, 1982). In the model tracing 
methodology, this matching is used as the basis for providing ongoing 
feedback to students while they progress through a problem (Anderson et 
al., 1985; Anderson et al., 1987; Anderson et aI., 1990). The general 
strategy in model tracing systems is to present a problem for the student to 
solve, track the student's progress step by step, and intervene with explan­
atory feedback upon an error or a request for help. If the student's step is 
one that would be produced by executing one of the correct rules considered 
by the system, the tutor silently follows the student's path through the 
problem. In contrast, if the step is illegal or follows a strategy unlikely to 
succeed, the tutor intervenes with a suggestion. For example, an incorrect 
use of a geometry theorem might trigger a brief explanatory message 
associated with the buggy problem-solving rule that captures the miscon­
ception. In this situation, the feedback helps the student diagnose the error 
and suggests a way to approach its repair. In this example, the feedback 
might suggest that the theorem used by the student is a good step toward the 
goal, but that the student may have assumed one of the necessary premises 
rather than proving all these premises before applying the theorem. This 
type of feedback relies not only on analysis of the surface behavior of the 
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solution, but also on inferences about the students' intended plan, as well as 
analyses of the potential plans for solving the problem (Anderson et aI., 
1985). A model tracing system may also respond to an error by finding a 
correct rule embodying an appropriate action in the current problem­
solving context. In this case, the tutor guides the student toward a correct 
replacement step for the error. 

The model tracing methodology has formed the basis for a number of 
intelligent tutors that teach computer programming (Anderson, Conrad, & 
Corbett, 1989; Anderson & Reiser, 1985; Reiser, Anderson, & Farrell, 1985; 
Reiser, Friedmann, Kimberg, & Ranney, 1988), proof construction in 
geometry (Anderson, Boyle, & Yost, 1986), solving algebraic equations 
(Milson, Lewis, & Anderson, 1990), and calculus (Singley, 1990). 

There are two key steps to evaluating whether a model tracing tutor 
indeed facilitates students' learning. The most straightforward approach is 
to compare students learning with the tutor to other students learning in the 
standard learning situation, such as students reading a textbook and solving 
problems on their own. However, many intelligent tutoring systems also 
provide tools designed to support reasoning apart from the model tracing 
guidance, such as the structure-based editor in the Carnegie-Mellon Uni­
versity LISP Intelligent Tutoring System (Corbett, Anderson, & Patterson, 
1990; Reiser et al., 1985) or the visual representations in the Geometry 
Tutor (Anderson et al., 1986) and in the GIL (Graphical Instruction in 
LISP) tutor (Merrill, Reiser, Beekelaar, & Hamid, 1992; Reiser, Kimberg, 
Lovett, & Ranney, 1992). Thus, it is also important to compare the model 
tracing tutor to a version that lets students use the same representational 
tools but does not provide model tracing feedback. 

Several studies have demonstrated the first point, that model tracing 
tutoring systems indeed support students' problem solving and facilitate 
their learning of the target domain. The advantage of model tracing 
intelligent tutoring systems has been demonstrated in several domains. 
Anderson et al. (1990) found that students receiving help from the CMU 
LISP Intelligent Tutoring System mastered the material more quickly and 
performed better on posttests. Similarly, students using GIL learned the 
material in an introductory LISP curriculum more quickly and with less 
difficulty than students using the standard environment (Reiser, Ranney, 
Lovett, & Kimberg, 1989; Reiser, Beekelaar, Tyle, & Merrill, 1991). 
Anderson et al. (1990) also found that students using the Geometry Tutor 
performed better on posttests than students instructed in a traditional 
classroom. 

It is necessary to seek the second type of evidence, separating the 
advantages of model tracing from the support of the tutor's interface. To 
this end, we have compared students learning to program using the model 
tracing version of GIL with students using an exploration-based version of 
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GIL that did not provide model tracing feedback (Reiser, Copen, Ranney, 
Hamid, & Kimberg, 1991). The model tracing tutor intervened upon errors 
and offered guidance to help students correct the errors and work around 
impasses. The exploration-based system provided the same graphical rep­
resentation and a set of tools for editing and correcting programs, but did 
not intervene to offer suggestions or comment on the students' strategy. In 
the absence of such assistance, the exploratory students took almost twice 
as long to complete the curriculum. Not surprisingly, the exploratory 
students were better at finding bugs in a program on a debugging transfer 
test, presumably because they had more practice in finding and repairing 
their own errors than did the model tracing students. However, the two 
groups were equivalent on all the learning posttests that assessed their 
ability to construct programs and make predictions about their behavior, 
even though the model tracing students completed the learning sessions 
considerably more quickly. 

Corbett and Anderson (1991) found also that the CMU LISP Intelligent 
Tutoring System helps students master programming more quickly and with 
better learning than students who use the same structured editor interface 
but without the tutor's model tracing guidance. The results of these two sets 
of studies suggest that model tracing tutors do indeed facilitate learning in 
some domains, and that their effectiveness derives at least in part from the 
model tracing guidance these systems provide. 

The Reiser et al. (1991) results suggest also that there may be motivational 
benefits of model tracing, at least for lower ability students. The lower 
ability students, who received more active guidance from the model tracing 
system, exhibited more positive judgments about the domain and held 
higher opinions of their abilities than comparable students in the explor­
atory condition. These results are consistent with Snow and Lohman's 
(1984) review of learning outcomes, in which they suggest that structure and 
guidance are more important for low ability learners. Similarly, Schofield, 
Evans-Rhodes, and Huber (1990) observed much greater student involve­
ment and motivation among students working with the Anderson et al. 
(1986) geometry tutor than is common for students in high school geometry 
classes. These results suggest that the guidance provided by intelligent tutors 
may have a positive impact on motivation, in that it prevents the quite 
frustrating floundering episodes suffered by students working alone. A 
successful tutoring system can bring a difficult domain within the student's 
competence and provide a challenging task with less danger of failure. 

The next step in analyzing how model tracing tutors can assist learning is 
to investigate which aspects of their guidance are important for students' 
learning. For example, it may be that model tracing tutors are effective 
simply because they alert students to parts of solutions that require repair, 
and the explanations they present upon errors are unnecessary. Alterna-
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tively, explanatory feedback may help students understand their errors and 
learn more by fixing them. McKendree (1990) found that the content of 
feedback did indeed affect students' learning of geometry. For example, 
simply telling the student that an error had occurred was much less useful 
than reminding the student of the current goal or pointing out a feature of 
the error. McKendree argued that such feedback is particularly important 
for learning the goal structure of solutions. 

Reiser, Connelly, Ranney, and Ritter (1992) compared the effectiveness 
of several feedback strategies in the GIL tutor. Subjects who received 
minimal feedback, in which erroneous steps were noted by the tutor without 
further information, performed more poorly during the learning sessions 
and on posttests than subjects who received guidance about the location of 
the error in the current step. Explanatory feedback characterizing which 
features of the solution were incorrect provided additional benefits for 
learning. With increasing quality of feedback, subjects made fewer errors, 
deleted fewer (correct) partial solutions, were faster to solve the assigned 
problems, and performed better on posttests. 

The results reviewed in this section demonstrate that model tracing tutors 
facilitate students' learning, helping them learn more quickly, with less 
difficulty, and with better subsequent performance than students working 
in the standard environments. Second, model tracing guidance produces 
additional benefits beyond the tutor's helpful interface. Finally, explana­
tory content is responsible for at least part of the model tracing's effective­
ness. This explanation helps students fix errors more easily than they could 
alone, even if notified that an error had occurred. These results suggest that 
there is promise in the model tracing methodology for implementing 
feedback in a computerized tutor. 

In the previous section, we argued that human tutors follow students' 
reasoning carefully and provide feedback at every step. The results reviewed 
here suggest that model tracing can profitably provide some components of 
this type of feedback for students. In the next section, we look in more 
detail at the important similarities and differences between the feedback 
strategies of human tutors and computer tutors. We focus on the tutor's 
assistance in overcoming impasses because this appears to be a key 
component in the tutor's efforts to assist learning. Do model tracing tutors 
respond differently than human tutors when a student encounters an 
impasse? 

EXAMINING PEDAGOGICAL TECHNIQUES OF 
COMPUTER TUTORS AND HUMAN TUTORS 

An intelligent tutoring system that follows students' reasoning and provides 
feedback on errors using the model tracing methodology can achieve signifi-
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cant pedagogical improvements over students working without assistance. 
However, there are important differences in the styles and abilities of 
computer tutors and human tutors. In order to evaluate the potential for 
achieving tutorial guidance in computer tutors, we must examine the 
possible consequences of these differences. In this section, we compare 
various ways in which computer tutors and human tutors support and guide 
students' learning. We consider what lessons can be learned from human 
tutors for the design of interactive learning environments. 

Our discussion focuses on how tutorial feedback can assist students' 
learning. Questions about the type of support and guidance students should 
receive are at the core of the design of interactive learning environments. 
What type and how much guidance should a learning environment provide 
to ensure that the problem solving is productive, without overly en­
croaching on the student's active role in the problem solving? The debates 
about educational software echo the vigorous earlier debates of educational 
theorists about how best to provide instruction, in which some theorists 
argued that students should be free to control their own learning and learn 
through exploration (Bruner, 1961; Davis, 1966) and others stressed the 
importance of structure and guidance for students (Ausubel, 1963; Skinner, 
1968). What do the observations of human tutors suggest about this 
controversial issue? 

An expert tutor has to satisfy two pedagogical goals that are potentially 
in conflict. One goal is to leave students in control, free to reason through 
problems for themselves, making mistakes, detecting them, and learning by 
recovering from those errors and working around impasses. This class of 
potential benefits leads some researchers to argue that computerized 
learning environments should primarily support students' exploration, 
providing tools that empower students to learn by discovery (e.g., Burton & 
Brown, 1982; Schank & Farrell, 1987; Schwartz, 1989; Shute, Glaser, & 
Raghavan, 1989). If the system intervenes more than is necessary and is 
overly restrictive and guiding, it may interfere with the benefits of active 
learning by doing. 

On the other hand, a tutor also has the goal of preventing students from 
becoming confused and frustrated and ensuring that they learn from their 
problem solving. There are dangers in leaving students too free to explore. 
Sweller (1988) argued that the problem solving of beginning students, which 
is often based upon weak methods and extensive search, may lead to less 
effective learning than studying worked out example problems. Lewis and 
Anderson (1985) argued that if a solution to a problem is obtained through 
excessive floundering, it may be difficult for students to remember what 
path they took to the solution; hence it may be difficult to learn from that 
experience. Anderson et al. (1985) stressed the importance of providing 
error feedback while the buggy knowledge that led to the error is still active 
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and available. Burton and Brown (1982), although stressing the importance 
of students learning without being overly directed, argued that discovery 
should be guided by a coach who intervenes occasionally upon errors to 
ensure that errors become productive learning experiences. VanLehn (1988) 
argued that students learn when they encounter and overcome impasses; 
hence this view also suggests the importance of providing guidance when the 
student is currently facing the impasse, rather than when the student has 
completed an erroneous solution. Indeed, studies of feedback in a variety of 
instructional contexts find that immediate feedback is more effective than 
feedback received after a delay (Kulik & Kulik, 1988). These arguments 
suggest that although there are benefits when students learn by solving 
problems, the problem solving may be more effective if it is somewhat 
guided. 

Each type of learning environment has its tradeoffs. A system that 
provides too much guidance may interfere with the active nature of learning 
by doing. If error feedback or hints are too easily available, students may 
not commit sufficient effort to reasoning through an answer on their own, 
resulting in poorer learning than without feedback (Bangert-Drowns, Kulik, 
Kulik, & Morgan, 1991; Kulhavy, 1977). Furthermore, if students come to 
rely on the system's help to find and fix errors, they may learn less from 
those errors (Schank & Farrell, 1987) and learn less about how to manage 
future errors (Collins & Brown, 1988). On the other hand, learning without 
feedback or with delayed feedback can lead to counterproductive floun­
dering from which it may be difficult to learn the target knowledge (Lewis 
& Anderson, 1985; Sweller, 1988). Blocking long episodes of floundering 
caused by confusing errors can facilitate learning with no apparent cost in 
later performance (Carroll & Carrithers, 1984). 

There is likely to be no simple answer concerning the ideal learning 
environment-there are clear advantages to both exploration and guidance. 
Furthermore, the most appropriate type of learning situation may depend 
upon factors such as the confidence and ability of the learners, whether the 
material is an early topic in the curriculum or advanced material, and how 
easily students can elicit information on their own in the domain to evaluate 
the success of their reasoning. Nevertheless, guidance will sometimes be 
required to prevent unproductive floundering. Therefore, when providing 
this guidance it seems sensible to attempt to adopt the techniques of the 
most successful model available for providing guidance-human tutors. 

FEEDBACK AND THE PROCESS OF RECOVERING 
FROM IMPASSES 

When solving problems, students take steps toward the problem solution, 
generate subgoals, and then achieve or abandon them as they progress. 
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Typically, students make errors or reach points where they are unable to 
proceed. These impasses are crucial events in the problem-solving episodes, 
at which learning can occur or the problem solving can go awry and become 
frustrating. Hence, it is at impasses that tutorial scaffolding of problem 
solving is most valuable. This guidance can help the student overcome the 
impasse, put the problem solving back on track, and learn from the event. 
In our comparison of human and tutorial feedback, therefore, we focus on 
tutorial actions that help students overcome impasses. In particular, we 
focus primarily on situations in which students repair erroneous solutions 
with tutorial assistance. 

Recovering from an error consists of a sequence of several components. 
First, the student must notice that an error has occurred. An error might be 
detected by generating situations to evaluate the current solution. An error 
also might be detected when the student has reached an impasse and cannot 
find a way to proceed (suggesting that a mistake earlier in the solution may 
have led to this dead end). Alternatively, an error might be detected through 
explicit tutorial feedback. Following the decision that an error has oc­
curred, the student must locate which portion of the solution must be 
modified, including determining which features of the solution are at fault. 
Then, one must replace the erroneous portion of the solution with one that 
achieves the current subgoal. In addition, it may be useful to determine 
what misunderstanding caused the error. 

As we shall see in the examples that follow, tutoring turns error recovery 
into a collaborative process, in which the tutor and student work together 
to repair errors. Tutorial interventions during problems solving could 
include assistance on some or all of these facets. We can characterize the 
directiveness of a tutorial response by identifying the portion of the 
processes in this sequence performed by the tutor, with the remainder left to 
the student. In this section, we present an analysis of this collaborative error 
repair process. The analysis will suggest that human and computer tutors 
are strikingly parallel in the type of reasoning they assist students in 
performing. The principal difference between them concerns the sharing of 
work in the collaboration. Human tutors allow their students to do more of 
the error recovery process than current computer tutors do. To investigate 
this assertion, let us consider the ways in which a human or computer tutor 
can collaborate in the impasse recovery process. 

At one extreme of the spectrum, a tutor might generate a situation where 
students are led to discover their own errors. Examples of this sort of 
feedback are shown in Table 1. Instead of directly informing the student 
that an error has occurred, the tutor constructs a situation in which the 
student realizes that the solution is partially incorrect, so the student can 
then take over the error correction. This process is an important strategy 
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TABLE 1 
Generating Situations to Help Students Detect Errors 

A. Human LISP programming tutor (unpublished data discussed in Merrill, Reiser, & 
Landes, 1992). 
Context: The student has misordered two cases of a conditional expression in her solution. 
Tutor: Say we put in 51 We put 5 in, and we go to the first case, and it would say nil­
Student: Oh, it would say yes then [in the second case), oh, that's right. So this [ease) 
should come after the number one [case), that's right. 

B. Human inquiry teacher (Collins & Stevens, 1982). 
Context: Suppose a student suggests they do not grow rice in British Columbia because it 
is too mountainous. 
Tutor: If British Columbia were flat could they grow rice there? 

used by inquiry teachers to help students detect their own misconceptions 
(Collins & Stevens, 1982). 

In addition, tutors could inform the student that an error has occurred in 
a new addition to the solution. This not only informs the student that there 
is a problem with the current solution, but also gives a clue about where to 
look for the error-namely, the latest step. In fact, Fox (1991) argued that 
tutors confirm every step that the student makes, and that a delay of 
confirmation of 1 to 2 sec informs the student that an error has occurred. 
Thus, the tutor conveys information by actually saying nothing. Students 
notice quickly that the tutor has failed to respond to a step and may be 
thereby indicating that they are no longer on the right track. Table 2 
provides a typical example from Fox's analyses of this type of repair; in the 
absence of the usual confirmation, the student questions whether the step is 
correct and invites assistance. 

Tutors may give the same information about the error in a more direct 
manner, as shown in Table 3. This table contains two examples in which 
tutors verbally intervene to alert the student to an error, after which the 
student takes over and repairs it with some additional assistance. In 
example B, the tutor tells the student that a mistake has occurred with the 
statement "There's a mistake there." This statement does not reveal exactly 
what feature of the solution is incorrect but only suggests that the student 
should reconsider the solution to attempt to repair it. 

TABLE 2 
Flagging an Error for the Student via the Absence of Confirmatory Feedback 

Human mathematics tutor (Fox, 1991). 
Student: because secant squared of theta is square root of [pause 0.8 sec] 
Student: Can I do it that way? 
Student: Can I say three minus one? 
Tutor: Mmm. No, you want to say three squared. Because the secant is three. 
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TABLE 3 
Flagging the Error for the Student via Direct Statements 

A. Human physics tutor (Fox, 1991). 
Student: Okay, so I guess I somehow have to ... tangent of theta is going to be ... sine 
of theta over cosine of theta. One over cosine of theta; so 3. 
Tutor: Mkay. Now. 
Student: Okay. 
Tutor: Looking up here, just at what ... 
Student: Aha. 
Tutor: ... they've done. Cause I can tell, we're headed in the wrong direction. 
Student: Yeah, they used to con-they use one of the pythagoreans. 
Tutor: One plus tangent squared equals the secant squared. 
Student: Secant squared. 

B. Human arithmetic tutor (Lepper & Chabay, 1988). 
Tutor: There's a mistake there. Can you find your mistake? 
Student: What? 
Tutor: Well, let's look and see. How much is nine and eight? [points to numbers] 
Student: Nine and eight is seventeen. 
Tutor: We put a seven [points] and carry the ten, right? Now add this column. [points] 
Student: [erases the 5 in the column] 
Tutor: Good for you. 

Tutorial behavior may be even more directive than simply verbally 
pointing out an error, as shown by the examples in Table 4. Here, instead 
of just telling the student that an error has occurred, the tutors point out the 
feature of the solution that is erroneous. Consider example A in Table 4, 
taken from a tutor helping a student with addition. Although stated as a 
question, this sort of feedback essentially tells the student the feature of the 
solution that must be modified. 

Table 5 shows feedback that is more directive still. In this table, the 
feedback not only tells the student that an error has occurred, where it 
occurred, and what the erroneous feature of the solution is, but also offers 
a principle of the domain that explains why the feature is erroneous. So, in 
example B, the tutor tells the student that the desired quantity is inappro­
priate, thus locating and pointing out the erroneous feature of the solution, 
and also tells the student about a physical law (Kirchofrs Law) that clarifies 
why the quantity cannot be measured. In contrast, in example C of Table 4 
the tutor does not offer a principle of LISP that indicates why LAST should 
return a list, but rather simply points out that this property of the function 
is violated in the solution. 

Another degree of guidance that can be provided upon errors or other 
impasses is setting a goal for the student, as shown in Table 6. By setting a 
goal for a new step, a tutor may tell the student not only where an error 
occurred and why it is wrong, but also may suggest how to repair it. For 



TABLE 4 
Directing Students to the Erroneous Feature of the Solution 

A. Human arithmetic tutor (Lepper & Chabay, 1988). 
Student answer: 

537 
+23 
5510 

Tutor: Now look at that again. Can you put two numbers down in one column here? 
B. Human physics tutor (Fox, 1991). 
Student: F, that's what I had a problem with, was F, they said if the electric force between 
them is equal to the weight. 
Tutor: Okay. 
Student: So I tried to look at the weight. 
Tutor: And all's they give you is the mass. 
Student: And it yeah. Oh, that's what it was, it was the mass. 
Tutor: Yeah. 
Student: Oh, I see, I want weight. 
Tutor: You wrote down mass. Yeah, what's the difference between weight and mass. 
Student: I used to know this, let's see. 
Tutor: I think, I think what it is is that ... what is, when you do gravity problems ... 
Student: Right. It's that ... 
Tutor: What do you always do? 
Student: You have to multiply it by the . . . 
Tutor: By G. 
Student: G. Right. [Several interchanges deleted] 
Student: So I need to multiply this time G. 
Tutor: Right. 

C. GIL (Reiser, Kimberg, Lovett, & Ranney, 1992). 
Tutor: Using LAST on (a bed) is a good idea. However d is not what LAST will 
produce. The correct output should be a list. 

TABLE 5 
Using a Domain Principle to Explain Why a Feature of a Solution is 

Erroneous 

A. Geometry Tutor (Anderson et aI., 1990). 
Tutor: ASA requires 3 premises. You have picked two premises. 
The statements you chose: LEJX == LEJY, LEXJ == LEXK, are not used by any rule. 
I'm going to start you off with a new set of premises. 

B. SOPHIE (Brown, Burton, & de Kleer, 1982). 
Student: What is the current through Node 4? 
Tutor: The current through a node is not meaningful since by Kirchoffs law the sum of 
currents through any node is O. Currents can be measured through parts (e.g., current 
through C6) or terminals (e.g., current through the collector of Q2). 

293 
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TABLE 6 
Setting Goals to Assist Students' Problem Solving 

A. Human LISP tutor (Unpublished data discussed in Merrill, Reiser, & Landes, 1992). 
Student step: The student types ((t, which is an incorrect way to begin the last case of a 
conditional. (In LISP, one uses two left parentheses in a conditional only if the following 
atom is a predicate. Here, the following atom is t, so only one left parenthesis should be 
used.) 
Tutor: Now here you have a choice. You could either use t or the predicate. 

B. WEST (Burton & Brown, 1976). 
Tutor: You don't seem to be bumping very much. Bumps are hard to get but they are 
usually a good idea. One good example would be the expression: (1 * 2) + 2, which 
would give you a SHORTCUT and a BUMP!! So you could have been at 54 while I 
would have ended up at 40. 

example, the tutor might reformulate the student's solution plan. Com­
paring the reformulated plan to the current step reveals the erroneous 
feature of the solution, and recovering from the impasse can begin by 
implementing the tutor's suggestions. For example, in example A of Table 
6, the tutor tells the student to take one or the other possible action, namely, 
to use either the t construct or a predicate. The tutor's goal setting leads the 
student to try to figure out the differences between the tutor's proposal and 
the current step, thus identifying the error and helping to begin the repair 
process. A tutor may also set goals that help the student solve further 
problems more effectively, as in example B of this table. 

Finally, an understanding of the misconception underlying the error may 
be useful in learning how to repair it. Part of the initial promise of 
intelligent tutoring systems arose from the notion that systematic misun­
derstandings underlie many student errors, and automatic recognition of 
these misconceptions could be used as the basis of computerized teaching 
tools that would remediate incorrect knowledge and provide individualized 
practice (Brown & Burton, 1978; Burton, 1982; Clancey, 1986; Ohlsson & 
Langley, 1988; Sleeman, 1982). 

For example, such feedback might point out that the student had 
confused two programming constructs, or had neglected to distribute 
multiplication over both addends, and so on. Table 7 presents examples of 
this style of feedback. These tutors perform most of the error correction, 
telling the student that an error has occurred, where it lies, and suggesting 
how to repair it, leaving the student the responsibility for implementing the 
tutor's suggestions. Most importantly, in these examples the computer tutor 
suggests how the student may have reasoned incorrectly to produce the 
error. This understanding of faulty reasoning underlying an erroneous 
solution is often called diagnosis. Many computer tutors have offered 
diagnoses in feedback, often consisting of statements about the student's 
intentions in making a solution step or about the chain of reasoning that led 
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TABLE 7 
Diagnosis of Buggy Reasoning 

A. Proust (Johnson, 1986)-a tutor for Pascal programming. 
Context: Line 12 in student's program: NEW : = NEW + 1. 
Tutor: It appears that you were trying to use line 12 to read the next input value. 
Incrementing NEW will not cause the next value to be read in. You need to use a READ 
statement here. 

B. The Algebra Tutor (Anderson et ai., 1990). 
Student step: The student rewrites the equation 15 - 3x = -x as 15 = -4x. 
Tutor: 15 = - 4x is wrong because you added - 3x instead of its inverse to - x. Try 
again. 

C. GIL (Reiser, Kimberg, Lovett, & Ranney, 1992). 
Problem: Extract the next to last element of a list, e.g., get d from (a bed e). 
Student's step: Take REST of (a bed e) to get the output (b c de). 
Tutor: OK, I think I see what you are trying to do. Are you trying to use RESTs on (a b c 
d e) to get a list beginning with d? It's not a bad idea but unfortunately it won't be a very 
general solution. Remember that your program should work for an input list of any length 
not just for (a bed e). 
[The student clicks the "More Info" button.) 
Tutor: Think about a way to get (d) by working from the back of the list rather than from 
the front. 

to the error. The ability of computer tutors to analyze the student's 
reasoning behind the error rather than merely report on the surface features 
of a solution that are incorrect has been considered a major achievement of 
intelligent tutoring systems over prior computer-assisted instruction (e.g., 
Clancey, 1986). For example, in example C of Table 7, although the student 
has not yet completed the erroneous plan, the tutor infers that the student 
is following a mistaken strategy and explains why this strategy will not 
produce an appropriate program. In the examples in Table 7, the tutors 
mention their inferences about the students' intentions in the error feed­
back. 

COMPARISONS OF HUMAN AND 
COMPUTER TUTORS 

Our characterization of the control of recovering from impasses is helpful 
in comparing the techniques of computer tutors with those of human tutors. 
We saw that a tutor might create a context in which the student is likely to 
detect that an error has occurred (Table 1), or might withhold confirmation, 
thereby suggesting that one has occurred (Table 2). If needed, the tutor 
might explicitly note that an error has occurred and give the student the 
opportunity to locate and repair it (Table 3). If more explicit direction is 
required, the tutor may direct the student to the erroneous surface feature 
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of the solution, either explicitly or through leading questions (Table 4). The 
tutor could also describe a principle of the domain that explains why the 
surface feature of the solution is incorrect (Table 5). In addition, when the 
student encounters an impasse, the tutor could set a new goal for the 
student, helping the student overcome it (Table 6). Tables 4, 5, and 6 
suggest that computer tutors can assist with some of the same error repair 
processes as human tutors. Table 7 reveals that computer tutor feedback 
also may include verbalizing the diagnosis of the misconceptions underlying 
the student's error. 

We see a strong similarity between human and computer tutors. It is clear 
from these examples and from the discussion of human tutoring studies 
earlier that human tutors carefully monitor students' reasoning and quickly 
intervene to make sure that the students' problem solving remains on track. 
This intervention may be subtle, but it is clearly present. When students veer 
off the track, the tutors intervene in various ways to lead them back. Our 
first conclusion from these analyses is that human tutors do perform a type 
of model tracing, in which they monitor students' problem solving and help 
guide them back on track when necessary. Computer tutors using model 
tracing can effectively capture this aspect of how human tutors support 
students. 

The next question then is what should be said when tutors intervene to 
support students as they conquer an impasse or repair an error. Lepper and 
Chabay (1988) and Putnam (1987) argued that human tutors do not provide 
diagnoses-verbalizations of the misconceptions that underlie student 
errors. Indeed, diagnosis has become a controversial point in the tutoring 
literature. Much effort has been placed in intelligent tutoring systems 
research on diagnosis of misconceptions (see Clancey, 1986, for a review). 
If human tutors can be shown to provide excellent feedback and guidance 
without doing diagnosis, this may call into question the focus of much 
intelligent tutoring systems research. 

Indeed, it may require more than simply pointing out the student's 
misconception to produce effective feedback. Sleeman and his colleagues 
(Sleeman, Kelly, Martinak, Ward, & Moore, 1989; Sleeman, Ward, Kelly, 
Martinak, & Moore, 1991) investigated the relative effectiveness of simply 
reteaching an erroneous procedure versus also including an explanation of 
the reasoning that led to the error. They found that explicitly providing such 
model-based remediation did not improve students' performance more than 
simply leading the students through the correct procedure over again. 

In addition, the examples offered in Tables 1 to 6 are consistent with the 
view that human tutors do not offer students diagnoses. Instead, they focus 
students on the erroneous part of the solution and help them to repair it, 
without communicating any diagnosis of what buggy reasoning the student 
may have done to lead to the error. In contrast, Table 7 contains examples 
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of computer tutors offering verbalizations of the (presumed) student 
intentions that led to an error. 

What is the role of diagnosis in tutoring? It is important to state clearly 
what is meant by this term. The question of whether tutors perform and 
convey diagnoses is a separate issue from whether they monitor students' 
problem solving and guide them back on track when needed. We have 
argued that the evidence on this point is clear - human tutors monitor 
students' solution processes to determine when students have left a good 
solution path, as do model tracing tutors. The question about diagnosis, 
then, concerns two additional aspects of guidance. First, do tutors perform 
diagnosis to determine where and how to focus attention on errors? 
Without diagnosis, a tutor could simply attempt to guide the student toward 
whatever correct step should replace the current erroneous one. Alterna­
tively, a tutor might engage in detailed reasoning about the source of a 
particular error in a solution, and use this analysis to formulate feedback. 
Second, do tutors communicate diagnoses? Even if tutors do in fact 
perform diagnoses, it is not necessarily the case that tutors explicitly convey 
these inferences about the student's reasoning in the feedback. 

In our view, human tutors perform diagnosis, but do not communicate 
their diagnoses to students. It is certainly apparent that a tutor must do 
more than simply state the student's misconception in order to help the 
student learn from the error, as the results of Sleeman and his colleagues 
point out (Sleeman et al., 1989; Sleeman et al., 1991). However, these 
studies do not address the question of whether tutors perform diagnosis, 
but rather show that verbalizing the misconception may not be sufficient for 
effective feedback. Thus, it may not be useful for the tutor to tell the 
student exactly what the diagnosis was, but the tutor may use this 
information when deciding what feedback to give to the student. 

Indeed, in the examples we have cited earlier in this section, we can see 
that tutors rarely verbalize their inferences about the student's reasoning. 
However, in many cases, the focus of the tutors' questions suggests that 
tutors have indeed analyzed the students' misconceptions, but their strategy 
is to use the analysis to focus the student on the erroneous situation rather 
than to communicate the diagnosis itself. For example, in Table 4 the tutor 
queries the student about the difference between mass and weight, and in 
Table 6 the tutor reminds the student about LISP predicates and the special 
atom t. In each case, the tutors' questions suggest they have a hypothesis 
about where the subject may be confused, but the tutors do not verbalize 
these diagnoses as some computer tutors do. 

To summarize, we argue that the first and most essential similarity 
between human and computer tutors is the support of problem solving 
through model tracing. The most important aspect of this support is helping 
students detect and repair errors and overcome impasses. If this process 
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requires understanding the source of the error (such as a confusion between 
mass and weight), the tutor may use this diagnosis to focus the questions in 
assisting the recovery. One potentially important difference between com­
puter tutors and human tutorial feedback is that many computer tutors 
explicitly verbalize this diagnosis and structure more of their feedback 
around it. 

Next, we turn to a second difference between human and computer 
tutors, the portions of the error recovery process assisted by the tutor. 
Human tutor feedback tends to include fewer of the components of the 
recovery process than computer tutor feedback, which often contains 
explicit verbalizations of the student's misconception. In our examples, this 
difference was clear since there were no computer tutors in Tables 1 to 4, 
and virtually no human tutors in Tables 5 to 7. The goal of encouraging the 
student to tackle as much of the problem solving effort as possible suggests 
that human tutorial feedback may be superior in this regard to computer 
tutors. 

A third difference between human tutorial feedback and that of com­
puter tutors concerns the flexibility of the level of human tutors' interven­
tions. Human tutors sometimes intervene immediately after an error has 
occurred, but at other times allow the solution progress to continue, 
returning to the error later. Thus, human tutors appear to strategically 
moderate their responses to errors (Littman et al., 1990; Merrill et aI., 
1992). The flexibility inherent in human tutors' intervention strategies is 
present in intelligent tutoring systems to only a limited extent. For example, 
a model-tracing tutor may respond to distracting low-level errors while the 
student is entering the step rather than waiting for the step to be complete. 
Thus, a system might query students about probable spelling mistakes or 
prevent students from entering syntactically illegal expressions (Anderson et 
al., 1985). Apart from this flexibility, however, the strategy for responding 
to errors is fixed in most intelligent tutoring systems. For example, the 
Anderson et al. (1986) Geometry Tutor always intervenes if students make 
two consecutive incorrect inferences, whereas Bonar and Cunningham's 
(1988) Bridge tutor waits to offer advice until students request a hint. The 
more sophisticated strategy of deciding to let some errors pass without 
comment until the solution is complete while responding to other types of 
errors during the solution is a goal for further research. 

A fourth difference is that human tutors are able to provide feedback of 
a more subtle nature than computer tutors. Human tutorial sessions are 
highly interactive, with the student and tutor completing each other's 
sentences and making use of information channels like pauses, pointing, 
tone of voice, and so forth. This higher bandwidth of communication 
allows the human tutor to convey the same amount of information while 
saying less than would be explicitly verbalized by a computer tutor (Ranney 
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& Reiser, 1989). Although interesting techniques are being developed for 
the input and display of information (e.g., Miller, 1988; Shneiderman, 
1983), this medium is clearly more limited than the variety of interaction 
strategies available to human tutors. Fox (1991) argued that the motiva­
tional benefits of human tutoring, such as those demonstrated by Lepper 
and his colleagues (Lepper et al., 1990; Lepper & Chabay, 1988), rely on the 
highly interactive nature of the communication between tutor and student. 
Because the student gets the opportunity to complete the tutor's sentences 
and fill in information for the tutor, the student feels less like a subordinate 
being guided by an expert and more like a peer. The role of the human tutor 
in the problem-solving success is generally less apparent than that of a 
computer tutor. Further research is needed to examine the motivational 
consequences of these differences in feedback style. 

Finally, flexibility in curriculum is another area in which human tutors 
are more advanced than computer tutors. McArthur et al. (1990) argued 
that human tutors do not let students flounder on any given task too long; 
instead, they terminate any task that causes the students significant trouble 
and immediately set another goal. The next task might be designed to 
highlight the previous error or to analogize from a previous solution. 
Regardless of the precise form of the new task, human tutors clearly adapt 
the curriculum for pedagogical advantage. Some researchers have begun to 
examine adaptation of curricula in computer tutors. Lesgold (1988) argued 
that computer tutors must be able to adapt their curricula to the needs and 
successes of individual students, rather than progressing through a pre­
scribed set of problems and activities. Lesgold proposed encoding curric­
ulum knowledge in computer tutors by associating different instructional 
methods with goals and subgoals of the instruction. This arrangement 
allows different instructional goals to be achieved via different pedagogical 
methods, including didactic instruction, online coaching, and dynamic 
selection of future problems (Lesgold, Lajoie, Logan, & Eggan, 1990; 
Woolf & Murray, 1987). 

In summary, we suggest that model-tracing tutors can capture a principal 
feature of the support and guidance of human tutors. Model-tracing 
feedback focuses students' attention on the parts of solutions that need 
further work, prevents unnecessary floundering, and provides explanations 
that facilitate learning from their errors. This support of the students' 
recovery from impasses appears to underlie the strong pedagogical benefits 
that have been demonstrated for model-tracing tutors over standard 
instructional environments. We have also characterized several ways in 
which current computer tutors appear more rigid and directive than human 
tutors. As yet, however, there are no empirical investigations of either 
cognitive or motivational outcomes of these differences in feedback. Such 
investigations are an important goal for future research. 
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CONCLUSIONS 

In this article, we described how human tutors scaffold students as they 
recover from impasses, and contrasted this with the behavior of computer 
tutors. Tutoring can be viewed as a collaborative problem-solving effort, 
with each party contributing to the solutions. This collaboration is partic­
ularly essential at impasses. The task of noticing, locating, and repairing an 
error is typically a mixture of the tutor's and the student's reasoning efforts. 

Human tutors are highly interactive, giving feedback after almost every 
step, and also giving hints and suggestions upon errors. However, they try 
to leave as much of the error repair to the students as possible, while still 
providing as much assistance as necessary. We have argued that a major 
source of the model-tracing tutor's effectiveness is capturing this type of 
guidance provided by human tutors. Like human tutors, model-tracing 
tutors carefully monitor students' problem solving and intervene to keep 
students from going too far off track and to help students recover from 
impasses. Both computer and human tutors assist and guide students in 
several components of the error recovery process, including detecting 
errors, locating errors, and repairing them. 

There are also several differences in the style of feedback that human and 
computer tutors use to assist in the error recovery process. In general, 
human tutors manage to assist students while having them do more of the 
error recovery process. Human tutors tend to offer assistance in flagging or 
locating an error, in contrast to computer tutors, which typically take on 
more of the error repair process, and may also convey diagnoses of the 
student's reasoning that led to the impasse. Human tutors are also more 
flexible in their level of assistance than computer tutors, and capitalize on 
a high bandwidth of communication to guide students in a more subtle 
manner than computer tutors. Together, these differences suggest that the 
computer tutor's assistance is more noticeable and its control more apparent 
than human tutorial intervention. 

These differences suggest important avenues for future research. First, it 
is critical to determine whether there are indeed cognitive and motivational 
consequences of these feedback differences. We would expect students to 
learn more from fixing their errors when they can playa larger role in their 
repair. In addition, we would expect the more obvious control asserted by 
computer tutors to moderate the potential motivational benefits of model 
tracing guidance. Empirical investigations of these issues would help extend 
current theories of how tutoring can support learning. Second, such 
differences should suggest ways in which guidance can be more effectively 
embedded in computer tutors. It seems that future research should explore 
ways for computer tutors to enable students to collaborate more in the error 
recovery process. Although it may not be possible to match the flexibility 
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and subtlety of human tutors with current computer tutoring techniques, 
our analyses suggest that that model tracing techniques can be profitably 
employed to achieve substantial cognitive and motivational benefits. 
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