
The time course recovery of confidence judgments using interruptions 
 

Kevin Zish (kzish@gmu.edu) 
George Mason University 

4400 University Dr, Fairfax, VA 22030 
 

Nathan Aguiar (naguiar@masonlive.gmu.edu) 
George Mason University 

4400 University Dr, Fairfax, VA 22030 
 

Malcolm McCurry (malcolm.mccurry.ctr@nrl.navy.mil) 
Peraton 

12975 Worldgate Dr, Herndon, VA 20170 
 

Erik M. Altmann (ema@msu.edu) 
Michigan State University 

316 Physics Rd, East Lansing, MI 48824 
 

J. Gregory Trafton (greg.trafton@nrl.navy.mil) 
U.S. Naval Research Laboratory 

4555 Overlook Ave SW, Washington, DC 20375 
 
 

Abstract 
Participants were interrupted during a procedural ask. Choice 
response time and confidence were measured up to seven trials 
after the interruption. Empirical data suggests a curvilinear 
pattern of recovery for choice response time and confidence. 
Two models of recovery for choice response time and 
confidence judgments were built. A comparison of the models 
provided support for post-decisional theories of confidence 
which suggest that confidence judgments are formed after a 
choice is made.  

Keywords: ACT-R, confidence, activation, modeling, 
decision-making 

Introduction 
When are confidence judgments formed? Current theories of 
confidence debate whether confidence judgments are formed 
at the time a decision is made or after. If someone asks: 
“How confident are you that the person you identified 
committed the crime?”, decisional theories of confidence say 
that confidence is available at the same time as the decision.  
Post-decisional theories of confidence say that confidence is 
only available after the decision is made. 

Decisional  theories are modeled in the context of signal 
detection theory (SDT: Green & Swets, 1966) and the role of 
strength in recognition memory (Egan, Schulman, & 
Greenberg, 1959; Hart, 1967; Norman & Wickelgren, 1969; 
Wickelgren, 1968). In these theories, confidence judgments 
are directly related to the strength of a retrieved memory. 
Stronger memories elicit higher confidence responses than 
weaker memories. Confidence is the strength of a memory or 
the memory’s distance to a decision criterion (Donaldson, 
1996; Wixted & Mickes, 2010). The confidence judgment is 

tied to the decision process and confidence is available at the 
same time a decision is made.  

Post-decisional theories state that forming a confidence 
judgment begins after a decision is made (Pleskac & 
Busemeyer, 2010; Vickers, 2001, 2014). These theories 
typically use sequential sampling models (Juslin & Olsson, 
1997; Vickers, 1970), specifically drift diffusion models 
(Heath, 1984; Laming, 1968; Link & Heath, 1975; Ratcliff, 
1978). In drift diffusion models, choice begins at some point 
z and evidence accrues on a series of counters (usually one) 
towards a criterion for decision A or decision B. Confidence 
is calculated as the speed with which evidence accumulates 
towards a criterion (Pleskac & Busemeyer, 2010; Ratcliff & 
Starns, 2009, 2013) or as the difference between the counters 
(Merkle & Van Zandt, 2006; Van Zandt & Maldonado-
Molina, 2004; Vickers, 2014). 

There is evidence for both decisional and post-decisional 
theories of confidence. In a recent study, Dotan, Meyniel, & 
Dehaene (2018) provided support for decisional theories of 
confidence. Participants were presented with arrows that 
pointed to the left or right side of the screen.  Arrows were 
presented one at a time. Participants were asked to move 
their finger from the bottom middle to targets at either the top 
left or top right of the screen. Participants moved to the side 
they thought the majority of the arrows was pointing towards. 
The authors found that y-speed, the speed that a participant 
was heading towards one choice or the other, was a better 
predictor of confidence than choice response time (RT). 
Because instantaneous speed was a better predictor of 
confidence than final choice RT, the authors argued that 
confidence is calculated online and repeatedly throughout the 
process of a judgment.  

Post-decisional theories suggest that evidence continues to 
be collected after a choice is made as shown by response 
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reversals (Resulaj, Kiani, Wolpert, & Shadlen, 2009; Van 
Zandt & Maldonado-Molina, 2004). Therefore, confidence 
judgments are based on the evidence collected for the choice 
plus some additional evidence collection.  

One influential post-decisional theory is the two stage 
dynamic signal detection theory (2DSD: Pleskac & 
Busemeyer, 2010) which models the relationship between 
choice and confidence in a drift diffusion model. Participants 
collect evidence for a choice using a standard drift diffusion 
process. Evidence retrieved from memory or the environment 
accrues on a counter towards a response threshold for given 
alternatives. When the counter reaches the choice criteria a 
choice is made. The evidence collected for the choice 
continues to be sampled to make a confidence judgment. 

There is also support for both decisional and post-decional 
explanations in a single experiment (Baranski & Petrusic, 
1998). Baranski & Petrusic (1998) asked participants to 
determine the longer or shorter of two horizontal lines under 
accuracy stress or speed stress. Under speed stress, the 
authors found a negatively linear relationship for confidence 
response time and confidence, where faster responses were 
more confident than slower responses. Under accuracy stress 
there was no relationship. The authors argued that speed 
stress caused participants to spend less time calculating 
confidence during the primary decision and rendered 
confidence post-decisonally. In contrast, participants had no 
change in confidence response time across levels of 
confidence for accuracy stress because confidence was 
processed during the decision.  

The evidence from Dotan et al. (2018), 2DSD, and 
Baranski & Petrusic (1998) suggest that rendering confidence 
judgments is a cognitively complex process that can originate 
at different times during decision making.  

One way to investigate cognitively complex processes is to 
interrupt them and record performance data at different 
points in time as the process recovers. Altmann & Trafton 
(2007) used interruptions to investigate time course recovery 
of memory and attention after an interruption. 

Here, we incorporated confidence judgments in a 
procedural task that generates rich error data.  Error data 
allows us to investigate process recovery of confidence 
judgments. Confidence judgments are relevant to study in 
this context because they could help inform both models of 
information processing in procedural tasks and performance 
in applied contexts where procedural errors have high 
potential cost.  

Altmann & Trafton (2007) had participants complete a 
dynamic decision making task. Participants were interrupted 
after completing an action. The time to resume the task after 
the interruption (i.e. resumption lag: Trafton, Altmann, 
Brock, & Mintz, 2003) was measured up to seven actions 
after the interruption was complete. The authors found that 
interruptions increased resumption time after the interruption. 
However, participants did not immediately recover after the 
first action following an interruption. Instead, the data 
showed that resumption lag followed a curvilinear pattern of 

recovery wherein the response time for each action after the 
interruption was faster than the preceding action. 

Altmann & Trafton (2007) developed a mathematical 
model that fit the pattern of recovery for resumption time. 
The model suggests that in procedural tasks spreading 
activation plays a critical role in facilitating the selection of 
the next action in a task. Activation spreads through 
associative links that form between actions in a task.  An 
associative link means that when an action is completed, 
priming from the completed action is added to the activation 
of all following actions. The activation for an element at 
position p is represented by 

 
where assoc is the amount of activation received by 
preceding elements of the task that have already been 
retrieved. The action directly after the current action receives 
the most priming. Subsequent actions receive lower and 
lower amounts of priming.  

When participants are allowed to complete an 
uninterrupted task, an element receives small amounts of 
priming from each associatively linked action before it. 
Interruptions effectively cut off that priming making it so that 
activation for the action to be resumed is lower than if it had 
not been interrupted. The curvilinear pattern of choice RT is 
evidence of cumulative priming building for the task as it 
recovers. 

The recovery process of choice RT is based on the ACT-R 
theory (Anderson et al., 2004) and is represented by 

 
where F is a scaling parameter representing non-decisional 
processes. 

Using a similar approach, we can investigate the time 
course of confidence judgments by interrupting participants 
during a decision and building a model of choice, taken from 
Altmann & Trafton (2007), and a model of confidence as 
those processes recover. We assume, as does SDT theory, 
that confidence is a scaled measure of strength. We represent 
strength using activation which is the assoc parameter in the 
Altmann & Trafton (2007) model.  

Activation, has been explored extensively in the ACT-R 
cognitive architecture (Anderson et al., 2004) of which the 
findings of Altmann & Trafton (2007) were based. We used 
the activation-based properties of ACT-R to make 
predictions about the relationship between choice RT and 
confidence. 

ACT-R suggests that activation of a memory element m is 
defined by the relationship between the number of times a 
goal has been rehearsed n and the time that has passed T. The 
following is a simplified equation for activation adapted from 
equation 2.2 in Anderson, Bothell, Lebiere, & Matessa 
(1998). 
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 Goals that have been rehearsed many times in the recent 

past have more activation than goals that have been rehearsed 
fewer times or rehearsed in the distant past. 

Goals also undergo decay. Decay is an important part of 
forgetting and is indexed by time. The more time that has 
passed since a goal has received activation (from being 
retrieved or from associative priming) the lower the 
activation for the goal. Interruptions decrease activation by 
decreasing the probability that a goal can be rehearsed, 
increasing the amount of time between rehearsal, or some 
combination of the two. 

Because we assume that confidence is based on activation, 
it follows that confidence should behave in several 
systematic ways according to ACT-R. First, confidence 
should decrease after an interruption because interruptions 
decrease activation. This finding has already been 
demonstrated by Aguiar, Zish, McCurry, & Trafton (2016) 
and Zish, Hassanzadeh, McCurry, & Trafton (2015). 

Second, confidence should increase in a curvilinear pattern 
after an interruption similar to Altmann & Trafton (2007). 
Cumulative priming after an interruption should result in a 
decrease in confidence after an interruption followed by a 
gradual increase in confidence for later actions as the 
decision process recovers. 

 Third, a mathematical model of the time course of 
recovery for confidence C can be built that will match 
empirical data. The model we propose is 

 
Different parameters were used for the RT model and the 
confidence model as RT and confidence are not on the same 
scale. We change the F parameter to S and the activation 
parameter from –A(p) for RT to A(p) given that RT decreases 
after an interruption and confidence increases. 

Fourth, we can use the two models to provide evidence for 
decisional or post-decisional theories.  In particular we can 
compare the assoc parameter in each model (RT and 
confidence).  Decisional theories would predict that the assoc 
parameter for the RT model and the assoc parameter for the 
confidence model should be equivalent because the theories 
claim that both choice and confidence emerge at the same 
time.  In contrast, post-decisional theories would predict that 
choice and confidence emerge at different times and in 
particular that confidence judgments occur after decision. 
 Therefore, post-decisional theories would predict that the 
assoc parameter would be significantly smaller for the 
confidence model than the assoc parameter for the RT model. 

Methods 

Participants 
One hundred and fifty-five George Mason University 
undergraduates participated for course credit.  

 
Task 
Primary Task The UNRAVEL task was adapted from 
Altmann, Trafton, & Hambrick (2014). The UNRAVEL task 
has seven rules each represented by a letter (i.e. U, N, R, A, 
V, E, L). Participants are presented with one number and one 
letter at the same time. Each letter and number has certain 
characteristics that change from trial to trial such as color, 
font, position, etc. Participants are instructed to keep the 
UNRAVEL rule in memory, interpret what characteristic of 
the stimuli they are asked to identify, analyze the stimuli, and 
using the keyboard to submit what characteristic they 
identified (Figure 1). The UNRAVEL rules are available to 
the participant at anytime by holding the Shift + ? keys. 

 
Figure 1. Example of the UNRAVEL task from Altmann et 
al. (2014). 
 

For example, the U action in UNRAVEL prompts 
participants to identify if a number or letter is underlined or 
italicized. If a letter or number is underlined they press the 
“u” key on the board. If the letter is italicized they are 
instructed to press the “i”. After they submit their response 
participants will be presented with a brand new stimulus. 
They will search the stimulus for a characteristic prompted 
by the N action. The N action prompts participants to 
determine if the letter is near (“n”) or far (“f”) from the 
beginning of the alphabet. Participants continue to proceed 
through the UNRAVEL rules. Once completed, participants 
wrap around to the U action. The goal is to complete the 
rules in order and correctly identify the prompted 
characteristic for each stimulus. 

Each action in UNRAVEL has a different set of keys 
associated with a response. As a result, the keystrokes reveal 
what action participants think they are on allowing for an 
analysis of sequence errors. 

Interruption Task We used an equation to determine when 
participants were given a secondary task that served as an 
interruption. The equation can be found in Altmann et al., 
(2014) and resulted in an interruption 11.85% of the time. 
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After an UNRAVEL response was submitted, the 
UNRAVEL task was occluded and participants were asked to 
type in a series of letters into a box. Once the letters were 
typed in correctly the UNRAVEL task was revealed again. 
Participants were asked to return to the UNRAVEL task in 
the correct order.  
 
Confidence Question Participants received a confidence 
question after completing an UNRAVEL action following 
half of the interruptions and an equal number of the control 
trials. The screen was replaced with a question that asked: 
“How confident were you that you just chose the correct step 
during the UNRAVEL task? Enter your choice on a scale 
from 1 to 6, with 1 being least confident and 6 being most 
confident.” The participant typed in their response into a text 
field. After submitting their response the participant was 
returned to the UNRAVEL task 

Procedure 
Participants filled out an approved IRB consent form as well 
as biographical information. The task was first described 
using screenshots. 

Participants were given a practice session where each rule 
of UNRAVEL was explained. They were exposed to all 
elements of the task including interruptions and confidence 
questions. Participants were shown that they could hit a 
certain key to access a list of the UNRAVEL rules at any 
time. 

Results 
One hundred and fifty-five participants completed 42442 
UNRAVEL actions. We treated each action as a trial. There 
were 4925 confidence judgments. Only trials with confidence 
judgments were analyzed. We averaged RT and confidence 
for each participant for the first seven actions after an 
interruption. 

Modeling the Time course of Recovery for Decisions 
RT 
Not every participant had a confidence question at each step 
after the interruption. We used a linear mixed-effects model 
which can account for unbalanced repeated measures designs 
(Lindstrom & Bates, 1990) to look for differences in RT 
across step. There was a significant effect of step [F(1, 
723.61) =  69.16, p < .05]. To investigate differences 
between steps, we compared Step 1 with Steps 2-7. Step1 
after an interruption was significantly higher than Steps 2-7 
[F(1,154) = 171.9, MSE = 207.15, p < .05].  This result 
replicates the disruptive effects of interruptions (Altmann et 
al., 2014; B. Edwards & Gronlund, 1998; Gillie & 
Broadbent, 1989). 

Replicating Altmann & Trafton (2007) the response time 
for the primary judgment has a curvilinear pattern of 
recovery after an interruption [Overall: F(6, 848) = 17.64, p < 
.05; Linear: t = -6.89,  p < .05; Quadratic: t = 4.65, p < .05]. 
Following Altmann & Trafton (2007), we fit the model to the 

data by estimating F and assoc  for each participant. We used 
the mean decision RT for the first trial after the interruption 
for each participant as the F parameter. An RMSE was 
calculated for the F parameter while varying the assoc 
parameter between .005 and 1 by .005. The lowest RMSE for 
each fixed F and varied assoc parameter was set for each 
participant. The F and assoc were then averaged across 
participants to give us an F of 4.79 and an assoc of .29 for 
our model. The mean RMSE was 1.11 and R2 was .37. Figure 
2 shows the empirical data for choice RT for each 
UNRAVEL step after an interruption and predicted choice 
RT from our model.  This replicates Altmann & Trafton 
(2007). 

To test goodness of fit we ran runs tests (Bradley, 1968) on 
the signs of the deviations from the model minus the data. 
The runs test showed that the model and data were not 
significantly different from each other [t(154) = 1.47, p = 
.14]. 

 
Figure 2. Data (solid) and model (dashed) for time course 
recovery of decision RT. Error bars are 95% confidence 
intervals data. 

Modeling the Time course of Recovery for 
Confidence 
There was a significant effect of step [F(1, 701.85 = 35.80, p 
< .05]. To investigate the differences between steps we 
compared Step 1 with Steps 2-7. Step 1 after an interruption 
was significantly lower than Steps 2-7 [F(1,154) = 67.6, MSE 
= 11.32, p < .05]. Similar to decision RT, confidence shows a 
pattern of recovery after an interruption [Overall: F(6,848) = 
3.89, p < .05; Linear: t = 3.05, p < .05; Quadratic: t = -2.37, p 
< .05]. We used the same modeling process that Altmann & 
Trafton (2007) did and that was used above for the RT 
model.  The S and assoc parameters were estimated for each 
participant and the parameters with the lowest RMSE were 
used for the final model. The S parameter was 4.95 and the 
assoc parameter was .08 for the final model. The mean 
RMSE was .41 and R2 was .43. Figure 3 shows the empirical 
data for confidence for each UNRAVEL action after an 
interruption and predicted confidence from our model.  

ICCM2018

212



The goodness of fit for the runs test for the model and data 
showed no significant difference [t(154)= -.02, p = .98] 
suggesting that confidence is, indeed, tied to activation. 

 
Figure 3. Data (solid) and model (dashed) for time course 
recovery of confidence. Error bars are 95% confidence 
intervals for data. 

Comparing Activation for Choice RT and 
Confidence 
To compare the timing of choice and confidence, we assume 
that the strength of a memory (activation) is the driver of 
both judgments. 

Both of our models have an activation component that is 
represented by the assoc parameter. We took the assoc 
parameter from each participant’s lowest RMSE model fit 
and compared assoc for choice RT and confidence using a 
within-subjects ANOVA. The assoc parameter was 
significantly lower for confidence (M=.08) than for choice 
RT (M=.29) [F(1,154) = 169.9, MSE = 3.56, p < .05, η2 
=.31] . 

Discussion 
In this paper we built two models of complex cognitive 
processes:  decision-making and confidence judgments. We 
instantiated decision-making using the model from Altmann 
& Trafton (2007) and modeling choice RT. We then built a 
model of confidence that also used an activation parameter so 
that we could compare the models. Our data and models 
produced five important findings. 

First, we were able to replicate the empirical curvilinear 
pattern from Altmann & Trafton (2007) and show that RT 
recovers over time after an interruption. 

Second, we built and replicated a model of RT for data on 
a new task.  

Third, we showed that confidence is influenced by 
cumulative priming and that confidence recovers over time. 
This is a unique finding given that many models and 
experiments measuring confidence consider the contribution 
of memory only from the item just retrieved (DeSoto & 
Roediger, 2014; Merkle & Van Zandt, 2006; Pleskac & 
Busemeyer, 2010; Ratcliff & Starns, 2009, 2013; Van Zandt 
& Maldonado-Molina, 2004; Douglas Vickers, 2014).  

In this study we did not rely on the common list-learning 
or perceptual stimuli that have come to dominate the field. 
Instead we used a procedural task which allowed us to 
demonstrate that confidence judgments respond to priming 
from other elements of the task. Given that many of the 
current popular models of confidence consider confidence 
judgments a unitary process (Merkle & Van Zandt, 2006; 
Pleskac & Busemeyer, 2010; Ratcliff & Starns, 2009, 2013; 
Van Zandt & Maldonado-Molina, 2004),  our findings 
suggest that models of confidence should be able to account 
for carryover effects.  

Fourth, we built a novel model for confidence judgments 
that explains the recovery of the confidence judgment 
process following an interruption. The model is driven by 
two parameters. The first is a scaling parameter which 
accounts for non-decisional processes. The second parameter 
is the amount of associative activation between elements. 
This second parameter is theoretically important because it 
suggests that in procedural tasks, confidence is sensitive to 
changes in activation.  

Fifth, the comparison of the assoc parameter for choice RT 
and confidence strongly suggests that confidence happens 
after choice. Recall the predictions of the decisional and post-
decisional theories of confidence. Decisional theories claim 
that confidence emerges as a result of the primary choice and 
that confidence is made available at the same time. Post-
decisional models claim that additional information is 
collected about the primary choice and confidence is formed 
after a decision is made. Therefore, decisional models would 
predict that the assoc parameter used to model choice RT and 
confidence would be the same for both because they emerge 
at the same time. Post-decisional models predict that the 
activation in the assoc parameter would be lower for 
confidence than for choice RT because the confidence 
decision occurs after choice RT. 

In our study we find that the assoc parameter is 
significantly less for confidence than it is for choice RT. This 
finding supports the post-decisional theories of confidence 
that say confidence is rendered after a decision is made. We 
believe that the assoc parameter is lower because the goal 
used to make the confidence judgment has undergone decay 
from when the same goal was measured earlier to make the 
primary choice. 

Calculating activation through modeling has some unique 
benefits for measuring cognitive processes that are otherwise 
difficult to investigate empirically. For example, in Dotan et 
al., (2018) the authors offer an alternative explanation of 
their data. According to some views of confidence 
processing, their data could be interpreted as very fast and 
discrete post-processing. By this view, participants make 
decisions and confidence judgments several times before 
rendering a final judgment. However, it would be very 
difficult empirically to disentangle online confidence from 
rapid post-decision processing. As was the case in our study, 
modeling could be a helpful tool to help investigate such a 
hypothesis. 
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